HomeHome Metamath Proof Explorer
Theorem List (p. 319 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 31801-31900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-exalimi 31801 An inference for distributing quantifiers over a double implication. (Almost) the general statement that spimfw 1865 proves. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))    &   (∃𝑥𝜑 → (¬ 𝜒 → ∀𝑥 ¬ 𝜒))       (∃𝑥𝜑 → (∀𝑥𝜓𝜒))
 
Theorembj-ax12ig 31802 A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 31803. (Contributed by BJ, 19-Dec-2020.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-ax12i 31803 A weakening of bj-ax12ig 31802 that is sufficient to prove a weak form of the axiom of substitution ax-12 2034. The general statement of which ax12i 1866 is an instance. (Contributed by BJ, 29-Sep-2019.)
(𝜑 → (𝜓𝜒))    &   (𝜒 → ∀𝑥𝜒)       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
Theorembj-ax12iOLD 31804 Old proof of bj-ax12i 31803. Obsolete as of 29-Dec-2020. (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜒 → ∀𝑥𝜒)       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
21.14.4.4  Adding ax-5
 
Theorembj-ax5ea 31805* If a formula holds for some value of a variable not occurring in it, then it holds for all values of that variable. (Contributed by BJ, 28-Dec-2020.)
(∃𝑥𝜑 → ∀𝑥𝜑)
 
Theorembj-nfv 31806* A non-occurring variable is semantically non-free. (Contributed by BJ, 6-May-2019.)
ℲℲ𝑥𝜑
 
Theorembj-ax12wlem 31807* A lemma used to prove a weak version of the axiom of substitution ax-12 2034. (Temporary comment: The general statement that ax12wlem 1996 proves.) (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
 
21.14.4.5  Equality and substitution
 
Syntaxwssb 31808 Syntax for the substitution of a variable for a variable in a formula. (Contributed by BJ, 22-Dec-2020.)
wff [𝑡/𝑥]b𝜑
 
Definitiondf-ssb 31809* Alternate definition of proper substitution. Note that the occurrences of a given variable are either all bound (𝑥, 𝑦) or all free (𝑡). Also note that the definiens uses only primitive symbols. It is obtained by applying twice Tarski's definition sb6 2417 which is valid for disjoint variables, so we introduce a dummy variable 𝑦 to isolate 𝑥 from 𝑡, as in dfsb7 2443 with respect to sb5 2418.

This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a DV condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row.

A drawback compared with df-sb 1868 is that this definition uses a dummy variable and therefore requires a justification theorem, which requires some of the auxiliary axiom schemes.

Once this is proved, more of the fundamental properties of proper substitution will be provable from Tarski's FOL system, sometimes with the help of specialization sp 2041, of the substitution axiom ax-12 2034, and of commutation of quantifiers ax-11 2021; that is, ax-13 2234 will often be avoided. (Contributed by BJ, 22-Dec-2020.)

([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssbim 31810 Distribute substitution over implication, closed form. Specialization of implication. Uses only ax-1--5. Compare spsbim 2382. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥(𝜑𝜓) → ([𝑡/𝑥]b𝜑 → [𝑡/𝑥]b𝜓))
 
Theorembj-ssbbi 31811 Biconditional property for substitution, closed form. Specialization of biconditional. Uses only ax-1--5. Compare spsbbi 2390. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥(𝜑𝜓) → ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓))
 
Theorembj-ssbimi 31812 Distribute substitution over implication. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
(𝜑𝜓)       ([𝑡/𝑥]b𝜑 → [𝑡/𝑥]b𝜓)
 
Theorembj-ssbbii 31813 Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
(𝜑𝜓)       ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)
 
Theorembj-alsb 31814 If a proposition is true for all instances, then it is true for any specific one. See stdpc4 2341. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥𝜑 → [𝑡/𝑥]b𝜑)
 
Theorembj-sbex 31815 If a proposition is true for a specific instance, then there exists an instance such that it is true for it. See spsbe 1871. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝜑 → ∃𝑥𝜑)
 
Theorembj-ssbeq 31816* Substitution in an equality, disjoint variables case. Might be shorter to prove the result about composition of two substitutions and prove this first with a DV on x,t and then in the general case. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝑦 = 𝑧𝑦 = 𝑧)
 
Theorembj-ssb0 31817* Substitution for a variable not occurring in a proposition. See sbf 2368. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝜑𝜑)
 
Theorembj-ssbequ 31818 Equality property for substitution, from Tarski's system. Compare sbequ 2364. (Contributed by BJ, 30-Dec-2020.)
(𝑠 = 𝑡 → ([𝑠/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜑))
 
Theorembj-ssblem1 31819* A lemma for the definiens of df-sb 1868. (Contributed by BJ, 22-Dec-2020.)
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssblem2 31820* The converse may not be provable without ax-11 2021. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)) → ∀𝑦𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)))
 
Theorembj-ssb1a 31821* One direction of a simplified definition of substitution in case of disjoint variables. See bj-ssb1 31822 for the biconditional, which requires ax-11 2021. (Contributed by BJ, 22-Dec-2020.)
(∀𝑥(𝑥 = 𝑡𝜑) → [𝑡/𝑥]b𝜑)
 
Theorembj-ssb1 31822* A simplified definition of substitution in case of disjoint variables. See bj-ssb1a 31821 for the backward implication, which does not require ax-11 2021 (note that here, the version of ax-11 2021 with disjoint setvar metavariables would suffice). Compare sb6 2417. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
 
Theorembj-ax12 31823* A weaker form of ax-12 2034 and ax12v2 2036, namely the generalization over 𝑥 of the latter. In this statement, all occurrences of 𝑥 are bound. (Contributed by BJ, 26-Dec-2020.)
𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
Theorembj-ax12ssb 31824* The axiom bj-ax12 31823 expressed using substitution. (Contributed by BJ, 26-Dec-2020.)
[𝑡/𝑥]b(𝜑 → [𝑡/𝑥]b𝜑)
 
Theorembj-modal5e 31825 Dual statement of hbe1 2008 (which is the real modal-5 2019). See also axc7 2117 and axc7e 2118. (Contributed by BJ, 21-Dec-2020.)
(∃𝑥𝑥𝜑 → ∀𝑥𝜑)
 
Theorembj-19.41al 31826 Special case of 19.41 2090 proved from Tarski, ax-10 2006 (modal5) and hba1 2137 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓))
 
Theorembj-equsexval 31827* Special case of equsexv 2095 proved from Tarski, ax-10 2006 (modal5) and hba1 2137 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥𝜓)
 
Theorembj-sb56 31828* Proof of sb56 2136 from Tarski, ax-10 2006 (modal5) and bj-ax12 31823. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
(∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
Theorembj-dfssb2 31829* An alternate definition of df-ssb 31809. Note that the use of a dummy variable in the definition df-ssb 31809 allows to use bj-sb56 31828 instead of equs45f 2338 and hence to avoid dependency on ax-13 2234 and to use ax-12 2034 only through bj-ax12 31823. Compare dfsb7 2443. (Contributed by BJ, 25-Dec-2020.)
([𝑡/𝑥]b𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ssbn 31830 The result of a substitution in the negation of a formula is the negation of the result of the same substitution in that formula. Proved from Tarski, ax-10 2006, bj-ax12 31823. Compare sbn 2379. (Contributed by BJ, 25-Dec-2020.)
([𝑡/𝑥]b ¬ 𝜑 ↔ ¬ [𝑡/𝑥]b𝜑)
 
Theorembj-ssbft 31831 See sbft 2367. This proof is from Tarski's FOL together with sp 2041 (and its dual). (Contributed by BJ, 22-Dec-2020.)
(ℲℲ𝑥𝜑 → ([𝑡/𝑥]b𝜑𝜑))
 
Theorembj-ssbequ2 31832 Note that ax-12 2034 is used only via sp 2041. See sbequ2 1869 and stdpc7 1945. (Contributed by BJ, 22-Dec-2020.)
(𝑥 = 𝑡 → ([𝑡/𝑥]b𝜑𝜑))
 
Theorembj-ssbequ1 31833 This uses ax-12 2034 with a direct reference to ax12v 2035. Therefore, compared to bj-ax12 31823, there is a hidden use of sp 2041. Note that with ax-12 2034, it can be proved with dv condition on 𝑥, 𝑡. See sbequ1 2096. (Contributed by BJ, 22-Dec-2020.)
(𝑥 = 𝑡 → (𝜑 → [𝑡/𝑥]b𝜑))
 
Theorembj-ssbid2 31834 A special case of bj-ssbequ2 31832. (Contributed by BJ, 22-Dec-2020.)
([𝑥/𝑥]b𝜑𝜑)
 
Theorembj-ssbid2ALT 31835 Alternate proof of bj-ssbid2 31834, not using bj-ssbequ2 31832. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑥/𝑥]b𝜑𝜑)
 
Theorembj-ssbid1 31836 A special case of bj-ssbequ1 31833. (Contributed by BJ, 22-Dec-2020.)
(𝜑 → [𝑥/𝑥]b𝜑)
 
Theorembj-ssbid1ALT 31837 Alternate proof of bj-ssbid1 31836, not using bj-ssbequ1 31833. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → [𝑥/𝑥]b𝜑)
 
Theorembj-ssbssblem 31838* Composition of two substitutions with a fresh intermediate variable. Remark: does not seem useful. (Contributed by BJ, 22-Dec-2020.)
([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜑)
 
Theorembj-ssbcom3lem 31839* Lemma for bj-ssbcom3 when setvar variables are disjoint. Remark: does not seem useful. (Contributed by BJ, 30-Dec-2020.)
([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b[𝑡/𝑥]b𝜑)
 
Theorembj-ax6elem1 31840* Lemma for bj-ax6e 31842. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theorembj-ax6elem2 31841* Lemma for bj-ax6e 31842. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
(∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
 
Theorembj-ax6e 31842 Proof of ax6e 2238 (hence ax6 2239) from Tarski's system, ax-c9 33193, ax-c16 33195. Remark: ax-6 1875 is used only via its principal (unbundled) instance ax6v 1876. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥 𝑥 = 𝑦
 
21.14.4.6  Adding ax-6
 
Theorembj-extru 31843 There exists a variable such that holds; that is, there exists a variable. This corresponds under the standard translation to one of the formulations of the modal axiom (D), the other being 19.2 1879. (This is also extt 31573; propose to move to Main extt 31573 and allt 31570; relabel exiftru 1878 to exgen ? ). (Contributed by BJ, 12-May-2019.) (Proof modification is discouraged.)
𝑥
 
Theorembj-spimevw 31844* Existential introduction, using implicit substitution. This is to spimeh 1912 what spimvw 1914 is to spimw 1913. (Contributed by BJ, 17-Mar-2020.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)
 
Theorembj-spnfw 31845 Theorem close to a closed form of spnfw 1915. (Contributed by BJ, 12-May-2019.)
((∃𝑥𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-cbvexiw 31846* Change bound variable. This is to cbvexvw 1957 what cbvaliw 1920 is to cbvalvw 1956. [TODO: move after cbvalivw 1921]. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-cbvexivw 31847* Change bound variable. This is to cbvexvw 1957 what cbvalivw 1921 is to cbvalvw 1956. [TODO: move after cbvalivw 1921]. (Contributed by BJ, 17-Mar-2020.)
(𝑦 = 𝑥 → (𝜑𝜓))       (∃𝑥𝜑 → ∃𝑦𝜓)
 
Theorembj-modald 31848 A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.)
(∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theorembj-denot 31849* A weakening of ax-6 1875 and ax6v 1876. (Contributed by BJ, 4-Apr-2021.) (New usage is discouraged.)
(𝑥 = 𝑥 → ¬ ∀𝑦 ¬ 𝑦 = 𝑥)
 
Theorembj-eqs 31850* A lemma for substitutions, proved from Tarski's FOL. The version without DV(𝑥, 𝑦) is true but requires ax-13 2234. The DV condition DV( 𝑥, 𝜑) is necessary for both directions: consider substituting 𝑥 = 𝑧 for 𝜑. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
 
21.14.4.7  Adding ax-7
 
Theorembj-cbvexw 31851* Change bound variable. This is to cbvexvw 1957 what cbvalw 1955 is to cbvalvw 1956. (Contributed by BJ, 17-Mar-2020.)
(∃𝑥𝑦𝜓 → ∃𝑦𝜓)    &   (𝜑 → ∀𝑦𝜑)    &   (∃𝑦𝑥𝜑 → ∃𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theorembj-ax12w 31852* The general statement that ax12w 1997 proves. (Contributed by BJ, 20-Mar-2020.)
(𝜑 → (𝜓𝜒))    &   (𝑦 = 𝑧 → (𝜓𝜃))       (𝜑 → (∀𝑦𝜓 → ∀𝑥(𝜑𝜓)))
 
21.14.4.8  Membership predicate, ax-8 and ax-9
 
Theorembj-elequ2g 31853* A form of elequ2 1991 with a universal quantifier. Its converse is ax-ext 2590. (TODO: move to main part, minimize axext4 2594--- as of 4-Nov-2020, minimizes only axext4 2594, by 13 bytes; and link to it in the comment of ax-ext 2590.) (Contributed by BJ, 3-Oct-2019.)
(𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦))
 
Theorembj-ax89 31854 A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 1979 and ax-9 1986. Indeed, it is implied over propositional calculus by the conjunction of ax-8 1979 and ax-9 1986, as proved here. In the other direction, one can prove ax-8 1979 (respectively ax-9 1986) from bj-ax89 31854 by using mpan2 703 ( respectively mpan 702) and equid 1926. (TODO: move to main part.) (Contributed by BJ, 3-Oct-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
 
Theorembj-elequ12 31855 An identity law for the non-logical predicate, which combines elequ1 1984 and elequ2 1991. For the analogous theorems for class terms, see eleq1 2676, eleq2 2677 and eleq12 2678. (TODO: move to main part.) (Contributed by BJ, 29-Sep-2019.)
((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
 
Theorembj-cleljusti 31856* One direction of cleljust 1985, requiring only ax-1 6-- ax-5 1827 and ax8v1 1981. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.)
(∃𝑧(𝑧 = 𝑥𝑧𝑦) → 𝑥𝑦)
 
21.14.4.9  Adding ax-11
 
Theorembj-alcomexcom 31857 Commutation of universal quantifiers implies commutation of existential quantifiers. Can be placed in the ax-4 1728 section, soon after 2nexaln 1747, and used to prove excom 2029. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.)
((∀𝑥𝑦 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑) → (∃𝑦𝑥𝜑 → ∃𝑥𝑦𝜑))
 
Theorembj-hbalt 31858 Closed form of hbal 2023. When in main part, prove hbal 2023 and hbald 2028 from it. (Contributed by BJ, 2-May-2019.)
(∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
21.14.4.10  Adding ax-12
 
Theoremaxc11n11 31859 Proof of axc11n 2295 from { ax-1 6-- ax-7 1922, axc11 2302 } . Almost identical to axc11nfromc11 33229. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theoremaxc11n11r 31860 Proof of axc11n 2295 from { ax-1 6-- ax-7 1922, axc9 2290, axc11r 2175 } (note that axc16 2120 is provable from { ax-1 6-- ax-7 1922, axc11r 2175 }).

Note that axc11n 2295 proves (over minimal calculus) that axc11 2302 and axc11r 2175 are equivalent. Therefore, axc11n11 31859 and axc11n11r 31860 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2302 appears slightly stronger since axc11n11r 31860 requires axc9 2290 while axc11n11 31859 does not).

(Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Theorembj-axc16g16 31861* Proof of axc16g 2119 from { ax-1 6-- ax-7 1922, axc16 2120 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
 
Theorembj-ax12v3 31862* A weak version of ax-12 2034 which is stronger than ax12v 2035. Note that if one assumes reflexivity of equality 𝑥 = 𝑥 (equid 1926), then bj-ax12v3 31862 implies ax-5 1827 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 31863. (Contributed by BJ, 6-Jul-2021.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-ax12v3ALT 31863* Alternate proof of bj-ax12v3 31862. Uses axc11r 2175 and axc15 2291 instead of ax-12 2034. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-sb 31864* A weak variant of sbid2 2401 not requiring ax-13 2234 nor ax-10 2006. On top of Tarski's FOL, one implication requires only ax12v 2035, and the other requires only sp 2041. (Contributed by BJ, 25-May-2021.)
(𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theorembj-modalbe 31865 The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2127. (Contributed by BJ, 20-Oct-2019.)
(𝜑 → ∀𝑥𝑥𝜑)
 
Theorembj-spst 31866 Closed form of sps 2043. Once in main part, prove sps 2043 and spsd 2045 from it. (Contributed by BJ, 20-Oct-2019.)
((𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorembj-19.21bit 31867 Closed form of 19.21bi 2047. (Contributed by BJ, 20-Oct-2019.)
((𝜑 → ∀𝑥𝜓) → (𝜑𝜓))
 
Theorembj-19.23bit 31868 Closed form of 19.23bi 2049. (Contributed by BJ, 20-Oct-2019.)
((∃𝑥𝜑𝜓) → (𝜑𝜓))
 
Theorembj-nexrt 31869 Closed form of nexr 2050. Contrapositive of 19.8a 2039. (Contributed by BJ, 20-Oct-2019.)
(¬ ∃𝑥𝜑 → ¬ 𝜑)
 
Theorembj-alrim 31870 Closed form of alrimi 2069. (Contributed by BJ, 2-May-2019.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-alrim2 31871 Imported form (uncurried form) of bj-alrim 31870. (Contributed by BJ, 2-May-2019.)
((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (𝜑 → ∀𝑥𝜓))
 
Theorembj-nfdt0 31872 A theorem close to a closed form of nf5d 2104 and nf5dh 2013. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → Ⅎ𝑥𝜓))
 
Theorembj-nfdt 31873 Closed form of nf5d 2104 and nf5dh 2013. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → Ⅎ𝑥𝜓)))
 
Theorembj-nexdt 31874 Closed form of nexd 2076. (Contributed by BJ, 20-Oct-2019.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓)))
 
Theorembj-nexdvt 31875* Closed form of nexdv 1851. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))
 
Theorembj-19.3t 31876 Closed form of 19.3 2057. (Contributed by BJ, 20-Oct-2019.)
((𝜑 → ∀𝑥𝜑) → (∀𝑥𝜑𝜑))
 
Theorembj-alexbiex 31877 Adding a second quantifier is a tranparent operation, (∀∃ case). (Contributed by BJ, 20-Oct-2019.)
(∀𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-exexbiex 31878 Adding a second quantifier is a tranparent operation, (∃∃ case). (Contributed by BJ, 20-Oct-2019.)
(∃𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-alalbial 31879 Adding a second quantifier is a tranparent operation, (∀∀ case). (Contributed by BJ, 20-Oct-2019.)
(∀𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-exalbial 31880 Adding a second quantifier is a tranparent operation, (∃∀ case). (Contributed by BJ, 20-Oct-2019.)
(∃𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-19.9htbi 31881 Strengthening 19.9ht 2128 by replacing its succedent with a biconditional (19.9t 2059 does have a biconditional succedent). This propagates. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
 
Theorembj-hbntbi 31882 Strengthening hbnt 2129 by replacing its succedent with a biconditional. See also hbntg 30955 and hbntal 37790. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 31881. (Proof modification is discouraged.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑))
 
Theorembj-biexal1 31883 A general FOL biconditional that generalizes 19.9ht 2128 among others. For this and the following theorems, see also 19.35 1794, 19.21 2062, 19.23 2067. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-biexal2 31884 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(∃𝑥𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-biexal3 31885 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(∃𝑥𝜑𝜓))
 
Theorembj-bialal 31886 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(∀𝑥𝜑𝜓) ↔ (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theorembj-biexex 31887 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
(∀𝑥(𝜑 → ∃𝑥𝜓) ↔ (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theorembj-hbext 31888 Closed form of hbex 2142. (Contributed by BJ, 10-Oct-2019.)
(∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theorembj-nfalt 31889 Closed form of nfal 2139. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
 
Theorembj-nfext 31890 Closed form of nfex 2140. (Contributed by BJ, 10-Oct-2019.)
(∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
 
Theorembj-eeanvw 31891* Version of eeanv 2170 with a DV condition on 𝑥, 𝑦 not requiring ax-11 2021. (The same can be done with eeeanv 2171 and ee4anv 2172.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
(∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
 
Theorembj-modal4e 31892 Dual statement of hba1 2137 (which is modal-4 ). (Contributed by BJ, 21-Dec-2020.)
(∃𝑥𝑥𝜑 → ∃𝑥𝜑)
 
Theorembj-modalb 31893 A short form of the axiom B of modal logic. (Contributed by BJ, 4-Apr-2021.)
𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
21.14.4.11  Adding ax-13
 
Theorembj-axc10 31894 Alternate (shorter) proof of axc10 2240. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theorembj-alequex 31895 A fol lemma. Can be used to reduce the proof of spimt 2241 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
 
Theorembj-spimt2 31896 A step in the proof of spimt 2241. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))
 
Theorembj-cbv3ta 31897 Closed form of cbv3 2253. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦(∃𝑥𝜓𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-cbv3tb 31898 Closed form of cbv3 2253. (Contributed by BJ, 2-May-2019.)
(∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦𝑥𝜓 ∧ ∀𝑥𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓)))
 
Theorembj-hbsb3t 31899 A theorem close to a closed form of hbsb3 2352. (Contributed by BJ, 2-May-2019.)
(∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑))
 
Theorembj-hbsb3 31900 Shorter proof of hbsb3 2352. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.)
(𝜑 → ∀𝑦𝜑)       ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >