MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljust Structured version   Visualization version   GIF version

Theorem cleljust 1985
Description: When the class variables in definition df-clel 2606 are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 1978 with the class variables in wcel 1977. (Contributed by NM, 28-Jan-2004.) Revised to use equsexvw 1919 in order to remove dependencies on ax-10 2006, ax-12 2034, ax-13 2234. Note that there is no DV condition on 𝑥, 𝑦, that is, on the variables of the left-hand side. (Revised by BJ, 29-Dec-2020.)
Assertion
Ref Expression
cleljust (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljust
StepHypRef Expression
1 elequ1 1984 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
21equsexvw 1919 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
32bicomi 213 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696
This theorem is referenced by:  bj-dfclel  32082
  Copyright terms: Public domain W3C validator