 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljust Structured version   Visualization version   GIF version

Theorem cleljust 1984
 Description: When the class variables in definition df-clel 2605 are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 1977 with the class variables in wcel 1976. (Contributed by NM, 28-Jan-2004.) Revised to use equsexvw 1918 in order to remove dependencies on ax-10 2005, ax-12 2033, ax-13 2233. Note that there is no DV condition on 𝑥, 𝑦, that is, on the variables of the left-hand side. (Revised by BJ, 29-Dec-2020.)
Assertion
Ref Expression
cleljust (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljust
StepHypRef Expression
1 elequ1 1983 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
21equsexvw 1918 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
32bicomi 212 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 194   ∧ wa 382  ∃wex 1694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978 This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695 This theorem is referenced by:  bj-dfclel  31878
 Copyright terms: Public domain W3C validator