Home | Metamath
Proof Explorer Theorem List (p. 20 of 424) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-27159) |
Hilbert Space Explorer
(27160-28684) |
Users' Mathboxes
(28685-42360) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 19.41v 1901* | Version of 19.41 2090 with a dv condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.41vv 1902* | Version of 19.41 2090 with two quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | ||
Theorem | 19.41vvv 1903* | Version of 19.41 2090 with three quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | ||
Theorem | 19.41vvvv 1904* | Version of 19.41 2090 with four quantifiers and a dv condition requiring fewer axioms. (Contributed by FL, 14-Jul-2007.) |
⊢ (∃𝑤∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑤∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | ||
Theorem | 19.42v 1905* | Version of 19.42 2092 with a dv condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | exdistr 1906* | Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | 19.42vv 1907* | Version of 19.42 2092 with two quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | ||
Theorem | 19.42vvv 1908* | Version of 19.42 2092 with three quantifiers and a dv condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011.) |
⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) | ||
Theorem | exdistr2 1909* | Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) | ||
Theorem | 3exdistr 1910* | Distribution of existential quantifiers in a triple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧𝜒))) | ||
Theorem | 4exdistr 1911* | Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Wolf Lammen, 20-Jan-2018.) |
⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | ||
Theorem | spimeh 1912* | Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | spimw 1913* | Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 7-Aug-2017.) |
⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spimvw 1914* | Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spnfw 1915 | Weak version of sp 2041. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 13-Aug-2017.) |
⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) ⇒ ⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | spfalw 1916 | Version of sp 2041 when 𝜑 is false. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017.) (Proof shortened by Wolf Lammen, 25-Dec-2017.) |
⊢ ¬ 𝜑 ⇒ ⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | equs4v 1917* | Version of equs4 2278 with a dv condition, which requires fewer axioms. (Contributed by BJ, 31-May-2019.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | equsalvw 1918* | Version of equsal 2279 with two dv conditions, which requires fewer axioms. (Contributed by BJ, 31-May-2019.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexvw 1919* | Version of equsexv 2095 with a dv condition, which requires fewer axioms. See also equsex 2281. (Contributed by BJ, 31-May-2019.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | cbvaliw 1920* | Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.) |
⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbvalivw 1921* | Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Axiom | ax-7 1922 |
Axiom of Equality. One of the equality and substitution axioms of
predicate calculus with equality. It states that equality is a
right-Euclidean binary relation (this is similar, but not identical, to
being transitive, which is proved as equtr 1935). This axiom scheme is a
sub-scheme of Axiom Scheme B8 of system S2 of [Tarski], p. 75, whose
general form cannot be represented with our notation. Also appears as
Axiom C7 of [Monk2] p. 105 and Axiom Scheme
C8' in [Megill] p. 448 (p. 16
of the preprint).
The equality symbol was invented in 1557 by Robert Recorde. He chose a pair of parallel lines of the same length because "noe .2. thynges, can be moare equalle." We prove in ax7 1930 that this axiom can be recovered from its weakened version ax7v 1923 where 𝑥 and 𝑦 are assumed to be disjoint variables. In particular, the only theorem referencing ax-7 1922 should be ax7v 1923. See the comment of ax7v 1923 for more details on these matters. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 7-Dec-2020.) Use ax7 1930 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | ax7v 1923* |
Weakened version of ax-7 1922, with a dv condition on 𝑥, 𝑦. This
should be the only proof referencing ax-7 1922,
and it should be
referenced only by its two weakened versions ax7v1 1924 and ax7v2 1925, from
which ax-7 1922 is then rederived as ax7 1930,
which shows that either ax7v 1923
or the conjunction of ax7v1 1924 and ax7v2 1925 is sufficient.
In ax7v 1923, it is still allowed to substitute the same variable for 𝑥 and 𝑧, or the same variable for 𝑦 and 𝑧. Therefore, ax7v 1923 "bundles" (a term coined by Raph Levien) its "principal instance" (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) with 𝑥, 𝑦, 𝑧 distinct, and its "degenerate instances" (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) and (𝑥 = 𝑦 → (𝑥 = 𝑦 → 𝑦 = 𝑦)) with 𝑥, 𝑦 distinct. These degenerate instances are for instance used in the proofs of equcomiv 1928 and equid 1926 respectively. (Contributed by BJ, 7-Dec-2020.) Use ax7 1930 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | ax7v1 1924* | First of two weakened versions of ax7v 1923, with an extra dv condition on 𝑥, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | ax7v2 1925* | Second of two weakened versions of ax7v 1923, with an extra dv condition on 𝑦, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | equid 1926 | Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | nfequid 1927 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.) |
⊢ Ⅎ𝑦 𝑥 = 𝑥 | ||
Theorem | equcomiv 1928* | Weaker form of equcomi 1931 with a dv condition on 𝑥, 𝑦. This is an intermediate step and equcomi 1931 is fully recovered later. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | ax6evr 1929* | A commuted form of ax6ev 1877. (Contributed by BJ, 7-Dec-2020.) |
⊢ ∃𝑥 𝑦 = 𝑥 | ||
Theorem | ax7 1930 |
Proof of ax-7 1922 from ax7v1 1924 and ax7v2 1925, proving sufficiency of the
conjunction of the latter two weakened versions of ax7v 1923,
which is
itself a weakened version of ax-7 1922.
Note that the weakened version of ax-7 1922 obtained by adding a dv condition on 𝑥, 𝑧 (resp. on 𝑦, 𝑧) does not permit, together with the other axioms, to prove reflexivity (resp. symmetry). (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | equcomi 1931 | Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | equcom 1932 | Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | ||
Theorem | equcomd 1933 | Deduction form of equcom 1932, symmetry of equality. For the versions for classes, see eqcom 2617 and eqcomd 2616. (Contributed by BJ, 6-Oct-2019.) |
⊢ (𝜑 → 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → 𝑦 = 𝑥) | ||
Theorem | equcoms 1934 | An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑦 = 𝑥 → 𝜑) | ||
Theorem | equtr 1935 | A transitive law for equality. (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | ||
Theorem | equtrr 1936 | A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | ||
Theorem | equeuclr 1937 | Commuted version of equeucl 1938 (equality is left-Euclidean). (Contributed by BJ, 12-Apr-2021.) |
⊢ (𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝑦 = 𝑥)) | ||
Theorem | equeucl 1938 | Equality is a left-Euclidean binary relation. (Right-Euclideanness is stated in ax-7 1922.) Exported (curried) form of equtr2 1941. (Contributed by BJ, 11-Apr-2021.) |
⊢ (𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝑥 = 𝑦)) | ||
Theorem | equequ1 1939 | An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
Theorem | equequ2 1940 | An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | ||
Theorem | equtr2 1941 | Equality is a left-Euclidean binary relation. Imported (uncurried) form of equeucl 1938. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by BJ, 11-Apr-2021.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | ||
Theorem | equequ2OLD 1942 | Obsolete proof of equequ2 1940 as of 12-Apr-2021. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | ||
Theorem | equtr2OLD 1943 | Obsolete proof of equtr2 1941 as of 11-Apr-2021. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | ||
Theorem | stdpc6 1944 | One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1945.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.) |
⊢ ∀𝑥 𝑥 = 𝑥 | ||
Theorem | stdpc7 1945 | One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1944.) Translated to traditional notation, it can be read: "𝑥 = 𝑦 → (𝜑(𝑥, 𝑥) → 𝜑(𝑥, 𝑦)), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥, 𝑥)." Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 → 𝜑)) | ||
Theorem | equvinv 1946* | A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2006, ax-13 2234. (Revised by Wolf Lammen, 10-Jun-2019.) Move the quantified variable (𝑧) to the left of the equality signs. (Revised by Wolf Lammen, 11-Apr-2021.) |
⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 = 𝑦)) | ||
Theorem | equviniva 1947* | A modified version of the forward implication of equvinv 1946 adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018.) |
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑦 = 𝑧)) | ||
Theorem | equvinivOLD 1948* | The forward implication of equvinv 1946. Obsolete as of 11-Apr-2021. Use equvinv 1946 instead. (Contributed by Wolf Lammen, 11-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 = 𝑦)) | ||
Theorem | equvinvOLD 1949* | Obsolete version of equvinv 1946 as of 11-Apr-2021. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2006, ax-13 2234. (Revised by Wolf Lammen, 10-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑥 = 𝑧 ∧ 𝑦 = 𝑧)) | ||
Theorem | equvelv 1950* | A specialized version of equvel 2335 with distinct variable restrictions and fewer axiom usage. (Contributed by Wolf Lammen, 10-Apr-2021.) |
⊢ (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦)) | ||
Theorem | ax13b 1951 | An equivalence between two ways of expressing ax-13 2234. See the comment for ax-13 2234. (Contributed by NM, 2-May-2017.) (Proof shortened by Wolf Lammen, 26-Feb-2018.) (Revised by BJ, 15-Sep-2020.) |
⊢ ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝜑)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝜑)))) | ||
Theorem | spfw 1952* | Weak version of sp 2041. Uses only Tarski's FOL axiom schemes. Lemma 9 of [KalishMontague] p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | spfwOLD 1953* | Obsolete proof of spfw 1952 as of 10-Oct-2021. (Contributed by NM, 19-Apr-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | spw 1954* | Weak version of the specialization scheme sp 2041. Lemma 9 of [KalishMontague] p. 87. While it appears that sp 2041 in its general form does not follow from Tarski's FOL axiom schemes, from this theorem we can prove any instance of sp 2041 having mutually distinct setvar variables and no wff metavariables (see ax12wdemo 1999 for an example of the procedure to eliminate the hypothesis). Other approximations of sp 2041 are spfw 1952 (minimal distinct variable requirements), spnfw 1915 (when 𝑥 is not free in ¬ 𝜑), spvw 1885 (when 𝑥 does not appear in 𝜑), sptruw 1724 (when 𝜑 is true), and spfalw 1916 (when 𝜑 is false). (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 27-Feb-2018.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | cbvalw 1955* | Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) & ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvalvw 1956* | Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvexvw 1957* | Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | alcomiw 1958* | Weak version of alcom 2024. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) |
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | hbn1fw 1959* | Weak version of ax-10 2006 from which we can prove any ax-10 2006 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) & ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) & ⊢ (¬ ∀𝑦𝜓 → ∀𝑥 ¬ ∀𝑦𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbn1w 1960* | Weak version of hbn1 2007. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hba1w 1961* | Weak version of hba1 2137. See comments for ax10w 1993. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
Theorem | hba1wOLD 1962* | Obsolete proof of hba1w 1961 as of 10-Oct-2021. (Contributed by NM, 9-Apr-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
Theorem | hbe1w 1963* | Weak version of hbe1 2008. See comments for ax10w 1993. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | ||
Theorem | hbalw 1964* | Weak version of hbal 2023. Uses only Tarski's FOL axiom schemes. Unlike hbal 2023, this theorem requires that 𝑥 and 𝑦 be distinct, i.e. not be bundled. (Contributed by NM, 19-Apr-2017.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | ||
Theorem | spaev 1965* |
A special instance of sp 2041 applied to an equality with a dv condition.
Unlike the more general sp 2041, we can prove this without ax-12 2034.
Instance of aeveq 1969.
The antecedent ∀𝑥𝑥 = 𝑦 with distinct 𝑥 and 𝑦 is a characteristic of a degenerate universe, in which just one object exists. Actually more than one object may still exist, but if so, we give up on equality as a discriminating term. Separating this degenerate case from a richer universe, where inequality is possible, is a common proof idea. The name of this theorem follows a convention, where the condition ∀𝑥𝑥 = 𝑦 is denoted by 'aev', a shorthand for 'all equal, with a distinct variable condition'. (Contributed by Wolf Lammen, 14-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | ||
Theorem | cbvaev 1966* | Change bound variable in an equality with a dv condition. Instance of aev 1970. (Contributed by NM, 22-Jul-2015.) (Revised by BJ, 18-Jun-2019.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦) | ||
Theorem | aevlem0 1967* | Lemma for aevlem 1968. Instance of aev 1970. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-12 2034. (Revised by Wolf Lammen, 14-Mar-2021.) (Revised by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 30-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥) | ||
Theorem | aevlem 1968* | Lemma for aev 1970 and axc16g 2119. Change free and bound variables. Instance of aev 1970. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-13 2234, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 29-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑡) | ||
Theorem | aeveq 1969* | The antecedent ∀𝑥𝑥 = 𝑦 with a dv condition (typical of a one-object universe) forces equality of everything. (Contributed by Wolf Lammen, 19-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝑧 = 𝑡) | ||
Theorem | aev 1970* | A "distinctor elimination" lemma with no restrictions on variables in the consequent. (Contributed by NM, 8-Nov-2006.) Remove dependency on ax-11 2021. (Revised by Wolf Lammen, 7-Sep-2018.) Remove dependency on ax-13 2234, inspired by an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) Remove dependency on ax-12 2034. (Revised by Wolf Lammen, 19-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑡 = 𝑢) | ||
Theorem | hbaevg 1971* | Generalization of hbaev 1972, proved at no extra cost. Instance of aev2 1973. (Contributed by Wolf Lammen, 22-Mar-2021.) (Revised by BJ, 29-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑡 𝑡 = 𝑢) | ||
Theorem | hbaev 1972* | Version of hbae 2303 with a DV condition, requiring fewer axioms. Instance of hbaevg 1971 and aev2 1973. (Contributed by Wolf Lammen, 22-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | aev2 1973* |
A version of aev 1970 with two universal quantifiers in the
consequent, and
a generalization of hbaevg 1971. One can prove similar statements with
arbitrary numbers of universal quantifiers in the consequent (the series
begins with aeveq 1969, aev 1970, aev2 1973).
Using aev 1970 and alrimiv 1842 (as in aev2ALT 1974), one can actually prove (with no more axioms) any scheme of the form (∀𝑥𝑥 = 𝑦 → PHI) , DV (𝑥, 𝑦) where PHI involves only setvar variables and the connectors →, ↔, ∧, ∨, ⊤, =, ∀, ∃, ∃*, ∃!, Ⅎ. An example is given by aevdemo 26709. This list cannot be extended to ¬ or ⊥ since the scheme ∀𝑥𝑥 = 𝑦 is consistent with ax-mp 5, ax-gen 1713, ax-1 6-- ax-13 2234 (as the one-element universe shows). (Contributed by BJ, 29-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑡 𝑢 = 𝑣) | ||
Theorem | aev2ALT 1974* | Alternate proof of aev2 1973, bypassing hbaevg 1971. (Contributed by BJ, 23-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑡 𝑢 = 𝑣) | ||
Theorem | axc11nlemOLD2 1975* | Lemma for axc11n 2295. Change bound variable in an equality. Obsolete as of 29-Mar-2021. Use aev 1970 instead. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Restructure to ease either bundling, or reducing dependencies on axioms. (Revised by Wolf Lammen, 30-Nov-2019.) Remove dependency on ax-12 2034. (Revised by Wolf Lammen, 14-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aevlemOLD 1976* | Old proof of aevlem 1968. Obsolete as of 29-Mar-2021. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-13 2234, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑧 𝑧 = 𝑤 → ∀𝑦 𝑦 = 𝑥) | ||
Syntax | wcel 1977 |
Extend wff definition to include the membership connective between
classes.
For a general discussion of the theory of classes, see mmset.html#class. (The purpose of introducing wff 𝐴 ∈ 𝐵 here is to allow us to express i.e. "prove" the wel 1978 of predicate calculus in terms of the wcel 1977 of set theory, so that we don't "overload" the ∈ connective with two syntax definitions. This is done to prevent ambiguity that would complicate some Metamath parsers. The class variables 𝐴 and 𝐵 are introduced temporarily for the purpose of this definition but otherwise not used in predicate calculus. See df-clab 2597 for more information on the set theory usage of wcel 1977.) |
wff 𝐴 ∈ 𝐵 | ||
Theorem | wel 1978 |
Extend wff definition to include atomic formulas with the epsilon
(membership) predicate. This is read "𝑥 is an element of
𝑦," "𝑥 is a member of 𝑦,"
"𝑥 belongs to 𝑦,"
or "𝑦 contains 𝑥." Note: The
phrase "𝑦 includes
𝑥 " means "𝑥 is a
subset of 𝑦;" to use it also for
𝑥
∈ 𝑦, as some
authors occasionally do, is poor form and causes
confusion, according to George Boolos (1992 lecture at MIT).
This syntactic construction introduces a binary non-logical predicate symbol ∈ (epsilon) into our predicate calculus. We will eventually use it for the membership predicate of set theory, but that is irrelevant at this point: the predicate calculus axioms for ∈ apply to any arbitrary binary predicate symbol. "Non-logical" means that the predicate is presumed to have additional properties beyond the realm of predicate calculus, although these additional properties are not specified by predicate calculus itself but rather by the axioms of a theory (in our case set theory) added to predicate calculus. "Binary" means that the predicate has two arguments. (Instead of introducing wel 1978 as an axiomatic statement, as was done in an older version of this database, we introduce it by "proving" a special case of set theory's more general wcel 1977. This lets us avoid overloading the ∈ connective, thus preventing ambiguity that would complicate certain Metamath parsers. However, logically wel 1978 is considered to be a primitive syntax, even though here it is artificially "derived" from wcel 1977. Note: To see the proof steps of this syntax proof, type "show proof wel /all" in the Metamath program.) (Contributed by NM, 24-Jan-2006.) |
wff 𝑥 ∈ 𝑦 | ||
Axiom | ax-8 1979 |
Axiom of Left Equality for Binary Predicate. One of the equality and
substitution axioms for a non-logical predicate in our predicate calculus
with equality. It substitutes equal variables into the left-hand side of
an arbitrary binary predicate ∈, which we
will use for the set
membership relation when set theory is introduced. This axiom scheme is a
sub-scheme of Axiom Scheme B8 of system S2 of [Tarski], p. 75, whose
general form cannot be represented with our notation. Also appears as
Axiom scheme C12' in [Megill] p. 448 (p.
16 of the preprint).
"Non-logical" means that the predicate is not a primitive of
predicate
calculus proper but instead is an extension to it. "Binary"
means that
the predicate has two arguments. In a system of predicate calculus with
equality, like ours, equality is not usually considered to be a
non-logical predicate. In systems of predicate calculus without equality,
it typically would be.
We prove in ax8 1983 that this axiom can be recovered from its weakened version ax8v 1980 where 𝑥 and 𝑦 are assumed to be disjoint variables. In particular, the only theorem referencing ax-8 1979 should be ax8v 1980. See the comment of ax8v 1980 for more details on these matters. (Contributed by NM, 30-Jun-1993.) (Revised by BJ, 7-Dec-2020.) Use ax8 1983 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | ||
Theorem | ax8v 1980* | Weakened version of ax-8 1979, with a dv condition on 𝑥, 𝑦. This should be the only proof referencing ax-8 1979, and it should be referenced only by its two weakened versions ax8v1 1981 and ax8v2 1982, from which ax-8 1979 is then rederived as ax8 1983, which shows that either ax8v 1980 or the conjunction of ax8v1 1981 and ax8v2 1982 is sufficient. (Contributed by BJ, 7-Dec-2020.) Use ax8 1983 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | ||
Theorem | ax8v1 1981* | First of two weakened versions of ax8v 1980, with an extra dv condition on 𝑥, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | ||
Theorem | ax8v2 1982* | Second of two weakened versions of ax8v 1980, with an extra dv condition on 𝑦, 𝑧 see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | ||
Theorem | ax8 1983 | Proof of ax-8 1979 from ax8v1 1981 and ax8v2 1982, proving sufficiency of the conjunction of the latter two weakened versions of ax8v 1980, which is itself a weakened version of ax-8 1979. (Contributed by BJ, 7-Dec-2020.) (Proof shortened by Wolf Lammen, 11-Apr-2021.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | ||
Theorem | elequ1 1984 | An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | ||
Theorem | cleljust 1985* | When the class variables in definition df-clel 2606 are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 1978 with the class variables in wcel 1977. (Contributed by NM, 28-Jan-2004.) Revised to use equsexvw 1919 in order to remove dependencies on ax-10 2006, ax-12 2034, ax-13 2234. Note that there is no DV condition on 𝑥, 𝑦, that is, on the variables of the left-hand side. (Revised by BJ, 29-Dec-2020.) |
⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) | ||
Axiom | ax-9 1986 |
Axiom of Right Equality for Binary Predicate. One of the equality and
substitution axioms for a non-logical predicate in our predicate calculus
with equality. It substitutes equal variables into the right-hand side of
an arbitrary binary predicate ∈, which we
will use for the set
membership relation when set theory is introduced. This axiom scheme is a
sub-scheme of Axiom Scheme B8 of system S2 of [Tarski], p. 75, whose
general form cannot be represented with our notation. Also appears as
Axiom scheme C13' in [Megill] p. 448 (p.
16 of the preprint).
We prove in ax9 1990 that this axiom can be recovered from its weakened version ax9v 1987 where 𝑥 and 𝑦 are assumed to be disjoint variables. In particular, the only theorem referencing ax-9 1986 should be ax9v 1987. See the comment of ax9v 1987 for more details on these matters. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 7-Dec-2020.) Use ax9 1990 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | ||
Theorem | ax9v 1987* | Weakened version of ax-9 1986, with a dv condition on 𝑥, 𝑦. This should be the only proof referencing ax-9 1986, and it should be referenced only by its two weakened versions ax9v1 1988 and ax9v2 1989, from which ax-9 1986 is then rederived as ax9 1990, which shows that either ax9v 1987 or the conjunction of ax9v1 1988 and ax9v2 1989 is sufficient. (Contributed by BJ, 7-Dec-2020.) Use ax9 1990 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | ||
Theorem | ax9v1 1988* | First of two weakened versions of ax9v 1987, with an extra dv condition on 𝑥, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | ||
Theorem | ax9v2 1989* | Second of two weakened versions of ax9v 1987, with an extra dv condition on 𝑦, 𝑧 see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | ||
Theorem | ax9 1990 | Proof of ax-9 1986 from ax9v1 1988 and ax9v2 1989, proving sufficiency of the conjunction of the latter two weakened versions of ax9v 1987, which is itself a weakened version of ax-9 1986. (Contributed by BJ, 7-Dec-2020.) (Proof shortened by Wolf Lammen, 11-Apr-2021.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | ||
Theorem | elequ2 1991 | An identity law for the non-logical predicate. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
The original axiom schemes of Tarski's predicate calculus are ax-4 1728, ax-5 1827, ax6v 1876, ax-7 1922, ax-8 1979, and ax-9 1986, together with rule ax-gen 1713. See mmset.html#compare 1713. They are given as axiom schemes B4 through B8 in [KalishMontague] p. 81. These are shown to be logically complete by Theorem 1 of [KalishMontague] p. 85. The axiom system of set.mm includes the auxiliary axiom schemes ax-10 2006, ax-11 2021, ax-12 2034, and ax-13 2234, which are not part of Tarski's axiom schemes. Each object-language instance of them is provable from Tarski's axioms, so they are logically redundant. However, they are conjectured not to be provable directly as schemes from Tarski's axiom schemes using only Metamath's direct substitution rule. They are used to make our system "metalogically complete" i.e. able to prove directly all possible schemes with wff and setvar variables, bundled or not, whose object-language instances are valid. (ax-12 2034 has been proved to be required; see http://us.metamath.org/award2003.html#9a. Metalogical independence of the other three are open problems.) (There are additional predicate calculus axiom schemes included in set.mm such as ax-c5 33186, but they can all be proved as theorems from the above.) Terminology: Two setvar (individual) metavariables are "bundled" in an axiom or theorem scheme when there is no distinct variable constraint ($d) imposed on them. (The term "bundled" is due to Raph Levien.) For example, the 𝑥 and 𝑦 in ax-6 1875 are bundled, but they are not in ax6v 1876. We also say that a scheme is bundled when it has at least one pair of bundled setvar variables. If distinct variable conditions are added to all setvar variable pairs in a bundled scheme, we call that the "principal" instance of the bundled scheme. For example, ax6v 1876 is the principal instance of ax-6 1875. Whenever a common variable is substituted for two or more bundled variables in an axiom or theorem scheme, we call the substitution instance "degenerate". For example, the instance ¬ ∀𝑥¬ 𝑥 = 𝑥 of ax-6 1875 is degenerate. An advantage of bundling is ease of use since there are fewer distinct variable restrictions ($d) to be concerned with, and theorems are more general. There may be some economy in being able to prove facts about principal and degenerate instances simultaneously. A disadvantage is that bundling may present difficulties in translations to other proof languages, which typically lack the concept (in part because their variables often represent the variables of the object language rather than metavariables ranging over them). Because Tarski's axiom schemes are logically complete, they can be used to prove any object-language instance of ax-10 2006, ax-11 2021, ax-12 2034, and ax-13 2234. "Translating" this to Metamath, it means that Tarski's axioms can prove any substitution instance of ax-10 2006, ax-11 2021, ax-12 2034, or ax-13 2234 in which (1) there are no wff metavariables and (2) all setvar variables are mutually distinct i.e. are not bundled. In effect this is mimicking the object language by pretending that each setvar variable is an object-language variable. (There may also be specific instances with wff metavariables and/or bundling that are directly provable from Tarski's axiom schemes, but it isn't guaranteed. Whether all of them are possible is part of the still open metalogical independence problem for our additional axiom schemes.) It can be useful to see how this can be done, both to show that our additional schemes are valid metatheorems of Tarski's system and to be able to translate object-language instances of our proofs into proofs that would work with a system using only Tarski's original schemes. In addition, it may (or may not) provide insight into the conjectured metalogical independence of our additional schemes. The theorem schemes ax10w 1993, ax11w 1994, ax12w 1997, and ax13w 2000 are derived using only Tarski's axiom schemes, showing that Tarski's schemes can be used to derive all substitution instances of ax-10 2006, ax-11 2021, ax-12 2034, and ax-13 2234 meeting Conditions (1) and (2). (The "w" suffix stands for "weak version".) Each hypothesis of ax10w 1993, ax11w 1994, and ax12w 1997 is of the form (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) where 𝜓 is an auxiliary or "dummy" wff metavariable in which 𝑥 doesn't occur. We can show by induction on formula length that the hypotheses can be eliminated in all cases meeting Conditions (1) and (2). The example ax12wdemo 1999 illustrates the techniques (equality theorems and bound variable renaming) used to achieve this. We also show the degenerate instances for axioms with bundled variables in ax11dgen 1995, ax12dgen 1998, ax13dgen1 2001, ax13dgen2 2002, ax13dgen3 2003, and ax13dgen4 2004. (Their proofs are trivial, but we include them to be thorough.) Combining the principal and degenerate cases outside of Metamath, we show that the bundled schemes ax-10 2006, ax-11 2021, ax-12 2034, and ax-13 2234 are schemes of Tarski's system, meaning that all object-language instances they generate are theorems of Tarski's system. It is interesting that Tarski used the bundled scheme ax-6 1875 in an older system, so it seems the main purpose of his later ax6v 1876 was just to show that the weaker unbundled form is sufficient rather than an aesthetic objection to bundled free and bound variables. Since we adopt the bundled ax-6 1875 as our official axiom, we show that the degenerate instance holds in ax6dgen 1992. (Recall that in set.mm, the only statement referencing ax-6 1875 is ax6v 1876.) The case of sp 2041 is curious: originally an axiom scheme of Tarski's system, it was proved logically redundant by Lemma 9 of [KalishMontague] p. 86. However, the proof is by induction on formula length, and the scheme form ∀𝑥𝜑 → 𝜑 apparently cannot be proved directly from Tarski's other axiom schemes. The best we can do seems to be spw 1954, again requiring substitution instances of 𝜑 that meet Conditions (1) and (2) above. Note that our direct proof sp 2041 requires ax-12 2034, which is not part of Tarski's system. | ||
Theorem | ax6dgen 1992 | Tarski's system uses the weaker ax6v 1876 instead of the bundled ax-6 1875, so here we show that the degenerate case of ax-6 1875 can be derived. Even though ax-6 1875 is in the list of axioms used, recall that in set.mm, the only statement referencing ax-6 1875 is ax6v 1876. We later rederive from ax6v 1876 the bundled form as ax6 2239 with the help of the auxiliary axiom schemes. (Contributed by NM, 23-Apr-2017.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 | ||
Theorem | ax10w 1993* | Weak version of ax-10 2006 from which we can prove any ax-10 2006 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | ax11w 1994* | Weak version of ax-11 2021 from which we can prove any ax-11 2021 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. Unlike ax-11 2021, this theorem requires that 𝑥 and 𝑦 be distinct i.e. are not bundled. (Contributed by NM, 10-Apr-2017.) |
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | ax11dgen 1995 | Degenerate instance of ax-11 2021 where bundled variables 𝑥 and 𝑦 have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017.) |
⊢ (∀𝑥∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
Theorem | ax12wlem 1996* | Lemma for weak version of ax-12 2034. Uses only Tarski's FOL axiom schemes. In some cases, this lemma may lead to shorter proofs than ax12w 1997. (Contributed by NM, 10-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax12w 1997* | Weak version of ax-12 2034 from which we can prove any ax-12 2034 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. An instance of the first hypothesis will normally require that 𝑥 and 𝑦 be distinct (unless 𝑥 does not occur in 𝜑). For an example of how the hypotheses can be eliminated when we substitute an expression without wff variables for 𝜑, see ax12wdemo 1999. (Contributed by NM, 10-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax12dgen 1998 | Degenerate instance of ax-12 2034 where bundled variables 𝑥 and 𝑦 have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017.) |
⊢ (𝑥 = 𝑥 → (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑥 → 𝜑))) | ||
Theorem | ax12wdemo 1999* | Example of an application of ax12w 1997 that results in an instance of ax-12 2034 for a contrived formula with mixed free and bound variables, (𝑥 ∈ 𝑦 ∧ ∀𝑥𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧𝑦 ∈ 𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 1956 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) | ||
Theorem | ax13w 2000* | Weak version (principal instance) of ax-13 2234. (Because 𝑦 and 𝑧 don't need to be distinct, this actually bundles the principal instance and the degenerate instance (¬ 𝑥 = 𝑦 → (𝑦 = 𝑦 → ∀𝑥𝑦 = 𝑦)).) Uses only Tarski's FOL axiom schemes. The proof is trivial but is included to complete the set ax10w 1993, ax11w 1994, and ax12w 1997. (Contributed by NM, 10-Apr-2017.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |