 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equvinivOLD Structured version   Visualization version   GIF version

Theorem equvinivOLD 1948
 Description: The forward implication of equvinv 1946. Obsolete as of 11-Apr-2021. Use equvinv 1946 instead. (Contributed by Wolf Lammen, 11-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equvinivOLD (𝑥 = 𝑦 → ∃𝑧(𝑧 = 𝑥𝑧 = 𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem equvinivOLD
StepHypRef Expression
1 ax6ev 1877 . 2 𝑧 𝑧 = 𝑥
2 equtrr 1936 . . . 4 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
32ancld 574 . . 3 (𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝑧 = 𝑥𝑧 = 𝑦)))
43eximdv 1833 . 2 (𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑥 → ∃𝑧(𝑧 = 𝑥𝑧 = 𝑦)))
51, 4mpi 20 1 (𝑥 = 𝑦 → ∃𝑧(𝑧 = 𝑥𝑧 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator