 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  equviniva Structured version   Visualization version   GIF version

Theorem equviniva 1947
 Description: A modified version of the forward implication of equvinv 1946 adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018.)
Assertion
Ref Expression
equviniva (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑦 = 𝑧))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem equviniva
StepHypRef Expression
1 ax6evr 1929 . 2 𝑧 𝑦 = 𝑧
2 equtr 1935 . . . 4 (𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
32ancrd 575 . . 3 (𝑥 = 𝑦 → (𝑦 = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧)))
43eximdv 1833 . 2 (𝑥 = 𝑦 → (∃𝑧 𝑦 = 𝑧 → ∃𝑧(𝑥 = 𝑧𝑦 = 𝑧)))
51, 4mpi 20 1 (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑦 = 𝑧))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by:  equvinvOLD  1949  ax13lem1  2236  nfeqf  2289  bj-ssbequ2  31832  wl-ax13lem1  32466
 Copyright terms: Public domain W3C validator