Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spimw | Structured version Visualization version GIF version |
Description: Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 7-Aug-2017.) |
Ref | Expression |
---|---|
spimw.1 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
spimw.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimw | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1876 | . 2 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | spimw.1 | . . 3 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | spimw.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | spimfw 1865 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝑥 = 𝑦 → (∀𝑥𝜑 → 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-6 1875 |
This theorem depends on definitions: df-bi 196 df-ex 1696 |
This theorem is referenced by: spimvw 1914 spnfw 1915 cbvaliw 1920 spfw 1952 spfwOLD 1953 |
Copyright terms: Public domain | W3C validator |