 Home Metamath Proof ExplorerTheorem List (p. 346 of 424) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27159) Hilbert Space Explorer (27160-28684) Users' Mathboxes (28685-42360)

Theorem List for Metamath Proof Explorer - 34501-34600   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremcdlemc6 34501 Lemma for cdlemc 34502. (Contributed by NM, 26-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))

Theoremcdlemc 34502 Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) → (𝐹𝑄) = ((𝑄 (𝑅𝐹)) ((𝐹𝑃) ((𝑃 𝑄) 𝑊))))

Theoremcdlemd1 34503 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑅 = ((𝑃 ((𝑃 𝑅) 𝑊)) (𝑄 ((𝑄 𝑅) 𝑊))))

Theoremcdlemd2 34504 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))

Theoremcdlemd3 34505 Part of proof of Lemma D in [Crawley] p. 113. The 𝑅𝑃 requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 (𝑃 𝑆))

Theoremcdlemd4 34506 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))

Theoremcdlemd5 34507 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑄) = (𝐺𝑄))) → (𝐹𝑅) = (𝐺𝑅))

Theoremcdlemd6 34508 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃))) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝐹𝑄) = (𝐺𝑄))

Theoremcdlemd7 34509 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ ¬ 𝑄 (𝑃 (𝐹𝑃)))) → (𝐹𝑅) = (𝐺𝑅))

Theoremcdlemd8 34510 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (𝐺𝑅))

Theoremcdlemd9 34511 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → (𝐹𝑅) = (𝐺𝑅))

Theoremcdlemd 34512 If two translations agree at any atom not under the fiducial co-atom 𝑊, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑃) = (𝐺𝑃)) → 𝐹 = 𝐺)

Theoremltrneq3 34513 Two translations agree at any atom not under the fiducial co-atom 𝑊 iff they are equal. (Contributed by NM, 25-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) = (𝐺𝑃) ↔ 𝐹 = 𝐺))

Theoremcdleme00a 34514 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅𝑃)

Theoremcdleme0aa 34515 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐵 = (Base‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈𝐵)

Theoremcdleme0a 34516 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)

Theoremcdleme0b 34517 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) → 𝑈𝑃)

Theoremcdleme0c 34518 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑈𝑅)

Theoremcdleme0cp 34519 Part of proof of Lemma E in [Crawley] p. 113. TODO: Reformat as in cdlemg3a 34903- swap consequent equality; make antecedent use df-3an 1033. (Contributed by NM, 13-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑈) = (𝑃 𝑄))

Theoremcdleme0cq 34520 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Apr-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝑄 𝑈) = (𝑃 𝑄))

Theoremcdleme0dN 34521 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴𝑃𝑅)) → 𝑉𝐴)

Theoremcdleme0e 34522 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑈𝑉)

Theoremcdleme0fN 34523 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑅𝐴)) → 𝑉𝑃)

Theoremcdleme0gN 34524 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑅𝐴) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑉𝑄)

Theoremcdlemeulpq 34525 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴)) → 𝑈 (𝑃 𝑄))

Theoremcdleme01N 34526 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ((𝑈𝑃𝑈𝑄𝑈 (𝑃 𝑄)) ∧ 𝑈 𝑊))

Theoremcdleme02N 34527 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ((𝑃 𝑈) = (𝑄 𝑈) ∧ 𝑈 𝑊))

Theoremcdleme0ex1N 34528* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑢𝐴 (𝑢 (𝑃 𝑄) ∧ 𝑢 𝑊))

Theoremcdleme0ex2N 34529* Part of proof of Lemma E in [Crawley] p. 113. Note that (𝑃 𝑢) = (𝑄 𝑢) is a shorter way to express 𝑢𝑃𝑢𝑄𝑢 (𝑃 𝑄). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑢𝐴 ((𝑃 𝑢) = (𝑄 𝑢) ∧ 𝑢 𝑊))

Theoremcdleme0moN 34530* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ∃*𝑟(𝑟𝐴 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅 = 𝑃𝑅 = 𝑄))

Theoremcdleme1b 34531 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing 𝐹 is a lattice element. 𝐹 represents their f(r). (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))    &   𝐵 = (Base‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐹𝐵)

Theoremcdleme1 34532 Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents their f(r). Here we show r f(r) = r u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → (𝑅 𝐹) = (𝑅 𝑈))

Theoremcdleme2 34533 Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents f(r). 𝑊 is the fiducial co-atom (hyperplane) w. Here we show that (r f(r)) w = u in their notation (4th line from bottom on p. 113). (Contributed by NM, 5-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝐹) 𝑊) = 𝑈)

Theoremcdleme3b 34534 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 34541 and cdleme3 34542. (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹𝑅)

Theoremcdleme3c 34535 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 34541 and cdleme3 34542. (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))    &    0 = (0.‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → 𝐹0 )

Theoremcdleme3d 34536 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 34541 and cdleme3 34542. (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))    &   𝑉 = ((𝑃 𝑅) 𝑊)       𝐹 = ((𝑅 𝑈) (𝑄 𝑉))

Theoremcdleme3e 34537 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 34541 and cdleme3 34542. (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)))) → 𝑉𝐴)

Theoremcdleme3fN 34538 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 34541 and cdleme3 34542. TODO: Delete - duplicates cdleme0e 34522. (Contributed by NM, 6-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑈𝑉)

Theoremcdleme3g 34539 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 34541 and cdleme3 34542. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐹𝑈)

Theoremcdleme3h 34540 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 34541 and cdleme3 34542. (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))    &   𝑉 = ((𝑃 𝑅) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐹𝐴)

Theoremcdleme3fa 34541 Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 34542. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐹𝐴)

Theoremcdleme3 34542 Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents f(r). 𝑊 is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa 34541 above, we show that f(r) W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as 𝐹𝐴 ∧ ¬ 𝐹 𝑊. Their proof provides no details of our lemmas cdleme3b 34534 through cdleme3 34542, so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝐹 𝑊)

Theoremcdleme4 34543 Part of proof of Lemma E in [Crawley] p. 113. 𝐹 and 𝐺 represent f(s) and fs(r). Here show p q = r u at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) = (𝑅 𝑈))

Theoremcdleme4a 34544 Part of proof of Lemma E in [Crawley] p. 114 top. 𝐺 represents fs(r). Auxiliary lemma derived from cdleme5 34545. We show fs(r) p q. (Contributed by NM, 10-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑆𝐴) → 𝐺 (𝑃 𝑄))

Theoremcdleme5 34545 Part of proof of Lemma E in [Crawley] p. 113. 𝐺 represents fs(r). We show r fs(r)) = p q at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝐺) = (𝑃 𝑄))

Theoremcdleme6 34546 Part of proof of Lemma E in [Crawley] p. 113. This expresses (r fs(r)) w = u at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝐺) 𝑊) = 𝑈)

Theoremcdleme7aa 34547 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 34553 and cdleme7 34554. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 (𝑈 𝑆))

Theoremcdleme7a 34548 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 34553 and cdleme7 34554. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))    &   𝑉 = ((𝑅 𝑆) 𝑊)       𝐺 = ((𝑃 𝑄) (𝐹 𝑉))

Theoremcdleme7b 34549 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 34553 and cdleme7 34554. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))    &   𝑉 = ((𝑅 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑉𝐴)

Theoremcdleme7c 34550 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 34553 and cdleme7 34554. (Contributed by NM, 7-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))    &   𝑉 = ((𝑅 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑈𝑉)

Theoremcdleme7d 34551 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 34553 and cdleme7 34554. (Contributed by NM, 8-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))    &   𝑉 = ((𝑅 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺𝑈)

Theoremcdleme7e 34552 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 34553 and cdleme7 34554. (Contributed by NM, 8-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))    &   𝑉 = ((𝑅 𝑆) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺 ≠ (0.‘𝐾))

Theoremcdleme7ga 34553 Part of proof of Lemma E in [Crawley] p. 113. See cdleme7 34554. (Contributed by NM, 8-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺𝐴)

Theoremcdleme7 34554 Part of proof of Lemma E in [Crawley] p. 113. 𝐺 and 𝐹 represent fs(r) and f(s) respectively. 𝑊 is the fiducial co-atom (hyperplane) that they call w. Here and in cdleme7ga 34553 above, we show that fs(r) W (top of p. 114), meaning it is an atom and not under w, which in our notation is expressed as 𝐺𝐴 ∧ ¬ 𝐺 𝑊. (Note that we do not have a symbol for their W.) Their proof provides no details of our cdleme7aa 34547 through cdleme7 34554, so there may be a simpler proof that we have overlooked. (Contributed by NM, 9-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐺 𝑊)

Theoremcdleme8 34555 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐶 represents s1. In their notation, we prove p s1 = p s. (Contributed by NM, 9-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐶 = ((𝑃 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑆𝐴) → (𝑃 𝐶) = (𝑃 𝑆))

Theoremcdleme9a 34556 Part of proof of Lemma E in [Crawley] p. 113. 𝐶 represents s1, which we prove is an atom. (Contributed by NM, 10-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐶 = ((𝑃 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴𝑃𝑆)) → 𝐶𝐴)

Theoremcdleme9b 34557 Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐶 = ((𝑃 𝑆) 𝑊)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶𝐵)

Theoremcdleme9 34558 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐶 and 𝐹 represent s1 and f(s) respectively. In their notation, we prove f(s) s1 = q s1. (Contributed by NM, 10-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹 𝐶) = (𝑄 𝐶))

Theoremcdleme10 34559 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐷 represents s2. In their notation, we prove s s2 = s r. (Contributed by NM, 9-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐷 = ((𝑅 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝐷) = (𝑆 𝑅))

Theoremcdleme8tN 34560 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑋 represents t1. In their notation, we prove p t1 = p t. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑋 = ((𝑃 𝑇) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑇𝐴) → (𝑃 𝑋) = (𝑃 𝑇))

Theoremcdleme9taN 34561 Part of proof of Lemma E in [Crawley] p. 113. 𝑋 represents t1, which we prove is an atom. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑋 = ((𝑃 𝑇) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑇𝐴𝑃𝑇)) → 𝑋𝐴)

Theoremcdleme9tN 34562 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑋 and 𝐹 represent t1 and f(t) respectively. In their notation, we prove f(t) t1 = q t1. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))    &   𝑋 = ((𝑃 𝑇) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ¬ 𝑇 (𝑃 𝑄)) → (𝐹 𝑋) = (𝑄 𝑋))

Theoremcdleme10tN 34563 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑌 represents t2. In their notation, we prove t t2 = t r. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑌 = ((𝑅 𝑇) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) → (𝑇 𝑌) = (𝑇 𝑅))

Theoremcdleme16aN 34564 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s u t u. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴𝑇𝐴) ∧ (𝑃𝑄𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑆 𝑈) ≠ (𝑇 𝑈))

Theoremcdleme11a 34565 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 12-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑈 (𝑆 𝑇)))) → (𝑆 𝑈) = (𝑆 𝑇))

Theoremcdleme11c 34566 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 13-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 (𝑆 𝑇))

Theoremcdleme11dN 34567 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃 𝑆) ≠ (𝑃 𝑇))

Theoremcdleme11e 34568 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 13-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝐷 = ((𝑃 𝑇) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐶𝐷)

Theoremcdleme11fN 34569 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝐷 = ((𝑃 𝑇) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐶)

Theoremcdleme11g 34570 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 14-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝐷 = ((𝑃 𝑇) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ 𝑃𝑄) → (𝑄 𝐹) = (𝑄 𝐶))

Theoremcdleme11h 34571 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 14-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝐷 = ((𝑃 𝑇) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝑄)

Theoremcdleme11j 34572 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 14-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝐷 = ((𝑃 𝑇) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐶 (𝑄 𝐹))

Theoremcdleme11k 34573 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 15-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝐷 = ((𝑃 𝑇) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐶 = ((𝑄 𝐹) 𝑊))

Theoremcdleme11l 34574 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 34575. (Contributed by NM, 15-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐹𝐺)

Theoremcdleme11 34575 Part of proof of Lemma E in [Crawley] p. 113, 1st sentence of 3rd paragraph on p. 114. 𝐹 and 𝐺 represent f(s) and f(t) respectively. Their proof provides no details of our cdleme11a 34565 through cdleme11 34575, so there may be a simpler proof that we have overlooked. (Contributed by NM, 15-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝐹 𝐺) = (𝑆 𝑇))

Theoremcdleme12 34576 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 16-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝑆 𝐹) (𝑇 𝐺)) = 𝑈)

Theoremcdleme13 34577 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective." 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑆𝑇 ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝑆 𝐹) (𝑇 𝐺)) (𝑃 𝑄))

Theoremcdleme14 34578 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> ... are axially perspective." We apply dalaw 34190 to cdleme13 34577. 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 8-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) (((𝑇 𝑃) (𝐺 𝑄)) ((𝑃 𝑆) (𝑄 𝐹))))

Theoremcdleme15a 34579 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, ((s p) (f(s) q)) ((t p) (f(t) q))=((p s1) (q s1)) ((p t1) (q t1)). We represent f(s), f(t), s1, and t1 with 𝐹, 𝐺, 𝐶, and 𝑋 respectively. The order of our operations is slightly different. (Contributed by NM, 9-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝑋 = ((𝑃 𝑇) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (((𝑇 𝑃) (𝐺 𝑄)) ((𝑃 𝑆) (𝑄 𝐹))) = (((𝑃 𝑋) (𝑄 𝑋)) ((𝑃 𝐶) (𝑄 𝐶))))

Theoremcdleme15b 34580 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, (p s1) (q s1)=s1. We represent s1 with 𝐶. (Contributed by NM, 10-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝑋 = ((𝑃 𝑇) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑃 𝐶) (𝑄 𝐶)) = 𝐶)

Theoremcdleme15c 34581 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, ((p s1) (q s1)) ((p t1) (q t1))=s1 t1. 𝐶 and 𝑋 represent s1 and t1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝑋 = ((𝑃 𝑇) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (((𝑃 𝑋) (𝑄 𝑋)) ((𝑃 𝐶) (𝑄 𝐶))) = (𝑋 𝐶))

Theoremcdleme15d 34582 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s1 t1 w. 𝐶 and 𝑋 represent s1 and t1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)    &   𝑋 = ((𝑃 𝑇) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑋 𝐶) 𝑊)

Theoremcdleme15 34583 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, (s t) (f(s) f(t)) w. We use 𝐹, 𝐺 for f(s), f(t) respectively. (Contributed by NM, 10-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) 𝑊)

Theoremcdleme16b 34584 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. It is unclear how this follows from s u t u, as the authors state, and we used a different proof. (Note: the antecedent ¬ 𝑇 (𝑃 𝑄) is not used.) (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐹𝐺)

Theoremcdleme16c 34585 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 2nd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, s t f(s) f(t)=s t u. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝑆 𝑇) 𝑈))

Theoremcdleme16d 34586 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s t) (f(s) f(t)) is an atom. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) ∈ 𝐴)

Theoremcdleme16e 34587 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s t) (f(s) f(t))=(s t) w. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝑆 𝑇) 𝑊))

Theoremcdleme16f 34588 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s t) (f(s) f(t))=(f(s) f(t)) w. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝐹 𝐺) 𝑊))

Theoremcdleme16g 34589 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, Eq. (1). 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s t) w=(f(s) f(t)) w. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))

Theoremcdleme16 34590 Part of proof of Lemma E in [Crawley] p. 113, conclusion of 3rd paragraph on p. 114. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s t) w=(f(s) f(t)) w, whether or not u s t. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) → ((𝑆 𝑇) 𝑊) = ((𝐹 𝐺) 𝑊))

Theoremcdleme17a 34591 Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺, and 𝐶 represent f(s), fs(p), and s1 respectively. We show, in their notation, fs(p)=(p q) (q s1). (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = ((𝑃 𝑄) (𝑄 𝐶)))

Theoremcdleme17b 34592 Lemma leading to cdleme17c 34593. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐶 (𝑃 𝑄))

Theoremcdleme17c 34593 Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐶 represents s1. We show, in their notation, (p q) (q s1)=q. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))    &   𝐶 = ((𝑃 𝑆) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) (𝑄 𝐶)) = 𝑄)

Theoremcdleme17d1 34594 Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. (Contributed by NM, 11-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = 𝑄)

Theoremcdleme0nex 34595* Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p q/0 (i.e. the sublattice from 0 to p q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 34516- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 33648, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))

Theoremcdleme18a 34596 Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show ¬ fs(q) w. (Contributed by NM, 12-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐺 𝑊)

Theoremcdleme18b 34597 Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show ¬ fs(q) q. (Contributed by NM, 12-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺𝑄)

Theoremcdleme18c 34598* Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show ¬ fs(q) = p whenever p q has three atoms under it (implied by the negated existential condition). (Contributed by NM, 10-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑄 𝑆) 𝑊)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺 = 𝑃)

Theoremcdleme22gb 34599 Utility lemma for Lemma E in [Crawley] p. 115. (Contributed by NM, 5-Dec-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))    &   𝐵 = (Base‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐺𝐵)

Theoremcdleme18d 34600* Part of proof of Lemma E in [Crawley] p. 114, 4th sentence of 4th paragraph. 𝐹, 𝐺, 𝐷, 𝐸 represent f(s), fs(r), f(t), ft(r) respectively. We show fs(r)=ft(r) for all possible r (which must equal p or q in the case of exactly 3 atoms in p q/0 i.e. when ¬ ∃𝑟𝐴...). (Contributed by NM, 12-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))    &   𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))    &   𝐷 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))    &   𝐸 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊)))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄)) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺 = 𝐸)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
 Copyright terms: Public domain < Previous  Next >