MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbaev Structured version   Visualization version   GIF version

Theorem hbaev 1972
Description: Version of hbae 2303 with a DV condition, requiring fewer axioms. Instance of hbaevg 1971 and aev2 1973. (Contributed by Wolf Lammen, 22-Mar-2021.)
Assertion
Ref Expression
hbaev (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem hbaev
StepHypRef Expression
1 hbaevg 1971 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator