HomeHome Metamath Proof Explorer
Theorem List (p. 136 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 13501-13600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlsws4 13501 The last symbol of a 4 letter word is its fourth symbol. (Contributed by AV, 8-Feb-2021.)
(𝐷𝑉 → ( lastS ‘⟨“𝐴𝐵𝐶𝐷”⟩) = 𝐷)
 
Theorems2prop 13502 A length 2 word is an unordered pair of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
 
Theorems2dmALT 13503 Alternate version of s2dm 13485, having a shorter proof, but requiring that 𝐴 and 𝐵 are sets. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝑆𝐵𝑆) → dom ⟨“𝐴𝐵”⟩ = {0, 1})
 
Theorems3tpop 13504 A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021.)
((𝐴𝑆𝐵𝑆𝐶𝑆) → ⟨“𝐴𝐵𝐶”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
 
Theorems4prop 13505 A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
(((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
 
Theorems3fn 13506 A length 3 word is a function with a triple as domain. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Revised by AV, 23-Jan-2021.)
((𝐴𝑉𝐵𝑉𝐶𝑉) → ⟨“𝐴𝐵𝐶”⟩ Fn {0, 1, 2})
 
Theoremfuncnvs1 13507 The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.)
Fun ⟨“𝐴”⟩
 
Theoremfuncnvs2 13508 The converse of a length 2 word is a function if its symbols are different sets. (Contributed by AV, 23-Jan-2021.)
((𝐴𝑉𝐵𝑉𝐴𝐵) → Fun ⟨“𝐴𝐵”⟩)
 
Theoremfuncnvs3 13509 The converse of a length 3 word is a function if its symbols are different sets. (Contributed by Alexander van der Vekens, 31-Jan-2018.) (Revised by AV, 23-Jan-2021.)
(((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → Fun ⟨“𝐴𝐵𝐶”⟩)
 
Theoremfuncnvs4 13510 The converse of a length 4 word is a function if its symbols are different sets. (Contributed by AV, 10-Feb-2021.)
((((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) ∧ ((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷)) → Fun ⟨“𝐴𝐵𝐶𝐷”⟩)
 
Theorems2f1o 13511 A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
((𝐴𝑆𝐵𝑆𝐴𝐵) → (𝐸 = ⟨“𝐴𝐵”⟩ → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵}))
 
Theoremf1oun2prg 13512 A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))
 
Theorems4f1o 13513 A length 4 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
(((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (((𝐴𝐵𝐴𝐶𝐴𝐷) ∧ (𝐵𝐶𝐵𝐷𝐶𝐷)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → 𝐸:dom 𝐸1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))))
 
Theorems4dom 13514 The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017.)
(((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (𝐸 = ⟨“𝐴𝐵𝐶𝐷”⟩ → dom 𝐸 = ({0, 1} ∪ {2, 3})))
 
Theorems2co 13515 Mapping a doubleton word by a function. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐹:𝑋𝑌)    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝐹 ∘ ⟨“𝐴𝐵”⟩) = ⟨“(𝐹𝐴)(𝐹𝐵)”⟩)
 
Theorems3co 13516 Mapping a length 3 string by a function. (Contributed by Mario Carneiro, 27-Feb-2016.)
(𝜑𝐹:𝑋𝑌)    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)       (𝜑 → (𝐹 ∘ ⟨“𝐴𝐵𝐶”⟩) = ⟨“(𝐹𝐴)(𝐹𝐵)(𝐹𝐶)”⟩)
 
Theorems0s1 13517 Concatenation of fixed length strings. (This special case of ccatlid 13222 is provided to complete the pattern s0s1 13517, df-s2 13444, df-s3 13445, ...) (Contributed by Mario Carneiro, 28-Feb-2016.)
⟨“𝐴”⟩ = (∅ ++ ⟨“𝐴”⟩)
 
Theorems1s2 13518 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶”⟩)
 
Theorems1s3 13519 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷”⟩)
 
Theorems1s4 13520 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸”⟩)
 
Theorems1s5 13521 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸𝐹”⟩)
 
Theorems1s6 13522 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸𝐹𝐺”⟩)
 
Theorems1s7 13523 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩)
 
Theorems2s2 13524 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶𝐷”⟩)
 
Theorems4s2 13525 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹”⟩)
 
Theorems4s3 13526 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺”⟩)
 
Theorems4s4 13527 Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸𝐹𝐺𝐻”⟩)
 
Theorems3s4 13528 Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷𝐸𝐹𝐺”⟩)
 
Theorems2s5 13529 Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶𝐷𝐸𝐹𝐺”⟩)
 
Theorems5s2 13530 Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.)
⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹𝐺”⟩)
 
Theorems2eq2s1eq 13531 Two length 2 words are equal iff the corresponding singleton words consisting of their symbols are equal. (Contributed by Alexander van der Vekens, 24-Sep-2018.)
(((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (⟨“𝐴”⟩ = ⟨“𝐶”⟩ ∧ ⟨“𝐵”⟩ = ⟨“𝐷”⟩)))
 
Theorems2eq2seq 13532 Two length 2 words are equal iff the corresponding symbols are equal. (Contributed by AV, 20-Oct-2018.)
(((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (⟨“𝐴𝐵”⟩ = ⟨“𝐶𝐷”⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremswrds2 13533 Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝑊 ∈ Word 𝐴𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(#‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
 
Theoremwrdlen2i 13534 Implications of a word of length 2. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))
 
Theoremwrd2pr2op 13535 A word of length 2 represented as unordered pair of ordered pairs. (Contributed by AV, 20-Oct-2018.) (Proof shortened by AV, 26-Jan-2021.)
((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) → 𝑊 = {⟨0, (𝑊‘0)⟩, ⟨1, (𝑊‘1)⟩})
 
Theoremwrdlen2 13536 A word of length 2. (Contributed by AV, 20-Oct-2018.)
((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} ↔ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))
 
Theoremwrdlen2s2 13537 A word of length 2 as doubleton word. (Contributed by AV, 20-Oct-2018.)
((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) → 𝑊 = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
 
Theoremwrdl2exs2 13538* A word of length 2 is a doubleton word. (Contributed by AV, 25-Jan-2021.)
((𝑊 ∈ Word 𝑆 ∧ (#‘𝑊) = 2) → ∃𝑠𝑆𝑡𝑆 𝑊 = ⟨“𝑠𝑡”⟩)
 
Theoremwrd3tpop 13539 A word of length 3 represented as triple of ordered pairs. (Contributed by AV, 26-Jan-2021.)
((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 3) → 𝑊 = {⟨0, (𝑊‘0)⟩, ⟨1, (𝑊‘1)⟩, ⟨2, (𝑊‘2)⟩})
 
Theoremwrdlen3s3 13540 A word of length 3 as length 3 string. (Contributed by AV, 26-Jan-2021.)
((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 3) → 𝑊 = ⟨“(𝑊‘0)(𝑊‘1)(𝑊‘2)”⟩)
 
Theoremrepsw2 13541 The "repeated symbol word" of length 2. (Contributed by AV, 6-Nov-2018.)
(𝑆𝑉 → (𝑆 repeatS 2) = ⟨“𝑆𝑆”⟩)
 
Theoremrepsw3 13542 The "repeated symbol word" of length 3. (Contributed by AV, 6-Nov-2018.)
(𝑆𝑉 → (𝑆 repeatS 3) = ⟨“𝑆𝑆𝑆”⟩)
 
Theoremswrd2lsw 13543 Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
((𝑊 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 substr ⟨((#‘𝑊) − 2), (#‘𝑊)⟩) = ⟨“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”⟩)
 
Theorem2swrd2eqwrdeq 13544 Two words of length at least 2 are equal if and only if they have the same prefix and the same two single symbols suffix. (Contributed by AV, 24-Sep-2018.) (Revised by Mario Carneiro/AV, 23-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 = 𝑈 ↔ ((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr ⟨0, ((#‘𝑊) − 2)⟩) = (𝑈 substr ⟨0, ((#‘𝑊) − 2)⟩) ∧ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈)))))
 
Theoremccatw2s1ccatws2 13545 The concatenation of a word with two singleton words equals the concatenation of the word with the doubleton word consisting of the symbols of the two singletons. (Contributed by Mario Carneiro/AV, 21-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) = (𝑊 ++ ⟨“𝑋𝑌”⟩))
 
Theoremccat2s1fvwALT 13546 Alternate proof of ccat2s1fvw 13267 using words of length 2, see df-s2 13444. A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018.) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝑊 ∈ Word 𝑉𝐼 ∈ ℕ0𝐼 < (#‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝐼) = (𝑊𝐼))
 
Theoremwwlktovf 13547* Lemma 1 for wrd2f1tovbij 13551. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}    &   𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}    &   𝐹 = (𝑡𝐷 ↦ (𝑡‘1))       𝐹:𝐷𝑅
 
Theoremwwlktovf1 13548* Lemma 2 for wrd2f1tovbij 13551. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}    &   𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}    &   𝐹 = (𝑡𝐷 ↦ (𝑡‘1))       𝐹:𝐷1-1𝑅
 
Theoremwwlktovfo 13549* Lemma 3 for wrd2f1tovbij 13551. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}    &   𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}    &   𝐹 = (𝑡𝐷 ↦ (𝑡‘1))       (𝑃𝑉𝐹:𝐷onto𝑅)
 
Theoremwwlktovf1o 13550* Lemma 4 for wrd2f1tovbij 13551. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}    &   𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}    &   𝐹 = (𝑡𝐷 ↦ (𝑡‘1))       (𝑃𝑉𝐹:𝐷1-1-onto𝑅)
 
Theoremwrd2f1tovbij 13551* There is a bijection between words of length two with a fixed first symbol contained in a pair and the symbols contained in a pair together with the fixed symbol. (Contributed by Alexander van der Vekens, 28-Jul-2018.)
((𝑉𝑌𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}–1-1-onto→{𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋})
 
Theoremeqwrds3 13552 A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021.)
((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
 
Theoremwrdl3s3 13553* A word of length 3 is a length 3 string. (Contributed by AV, 18-May-2021.)
((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
 
Theorems3sndisj 13554* The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021.)
((𝐴𝑋𝐵𝑌) → Disj 𝑐𝑍 {⟨“𝐴𝐵𝑐”⟩})
 
Theorems3iunsndisj 13555* The union of singletons consisting of length 3 strings which have distinct first and third symbols are disjunct. (Contributed by AV, 17-May-2021.)
(𝐵𝑋Disj 𝑎𝑌 𝑐 ∈ (𝑍 ∖ {𝑎}){⟨“𝑎𝐵𝑐”⟩})
 
Theoremofccat 13556 Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 28-Sep-2018.)
(𝜑𝐸 ∈ Word 𝑆)    &   (𝜑𝐹 ∈ Word 𝑆)    &   (𝜑𝐺 ∈ Word 𝑇)    &   (𝜑𝐻 ∈ Word 𝑇)    &   (𝜑 → (#‘𝐸) = (#‘𝐺))    &   (𝜑 → (#‘𝐹) = (#‘𝐻))       (𝜑 → ((𝐸 ++ 𝐹) ∘𝑓 𝑅(𝐺 ++ 𝐻)) = ((𝐸𝑓 𝑅𝐺) ++ (𝐹𝑓 𝑅𝐻)))
 
Theoremofs1 13557 Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)
 
Theoremofs2 13558 Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
(((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
 
5.8  Reflexive and transitive closures of relations

A relation, 𝑅, has the reflexive property if 𝐴𝑅𝐴 holds whenever 𝐴 is an element which could be related by the the relation, namely elements of its domain and range. Eliminating dummy variables we see that a segment of the identity relation must be a subset of the relation or ( I ↾ (ran 𝑅 ∪ dom 𝑅)) ⊆ 𝑅. See issref 5428.

A relation, 𝑅, has the transitive property if 𝐴𝑅𝐶 holds whenever there exists an intermediate value 𝐵 such that both 𝐴𝑅𝐵 and 𝐵𝑅𝐶 hold. This can be expressed without dummy variables as (𝑅𝑅) ⊆ 𝑅. See cotr 5427.

The transitive closure of a relation, (t+‘𝑅), is the smallest superset of the relation which has the transitive property. Likewise the reflexive-transitive closure, (t*‘𝑅), is the smallest superset which has both the reflexive and transitive properties.

Not to be confused with the transitive closure of a set, trcl 8487, which is a closure relative to a different transitive property, df-tr 4681.

 
5.8.1  The reflexive and transitive properties of relations
 
Theoremcoss12d 13559 Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019.)
(𝜑𝐴𝐵)    &   (𝜑𝐶𝐷)       (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐷))
 
Theoremtrrelssd 13560 The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019.)
(𝜑 → (𝑅𝑅) ⊆ 𝑅)    &   (𝜑𝑆𝑅)    &   (𝜑𝑇𝑅)       (𝜑 → (𝑆𝑇) ⊆ 𝑅)
 
Theoremxpcogend 13561 The most interesting case of the composition of two cross products. (Contributed by RP, 24-Dec-2019.)
(𝜑 → (𝐵𝐶) ≠ ∅)       (𝜑 → ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐷))
 
Theoremxpcoidgend 13562 If two classes are not disjoint, then the composition of their cross-product with itself is idempotent. (Contributed by RP, 24-Dec-2019.)
(𝜑 → (𝐴𝐵) ≠ ∅)       (𝜑 → ((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐵))
 
Theoremcotr2g 13563* Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 13564 for the main application. (Contributed by RP, 22-Mar-2020.)
dom 𝐵𝐷    &   (ran 𝐵 ∩ dom 𝐴) ⊆ 𝐸    &   ran 𝐴𝐹       ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝐷𝑦𝐸𝑧𝐹 ((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
 
Theoremcotr2 13564* Two ways of saying a relation is transitive. Special instance of cotr2g 13563. (Contributed by RP, 22-Mar-2020.)
dom 𝑅𝐴    &   (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵    &   ran 𝑅𝐶       ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
 
Theoremcotr3 13565* Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.)
𝐴 = dom 𝑅    &   𝐵 = (𝐴𝐶)    &   𝐶 = ran 𝑅       ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
 
Theoremcoemptyd 13566 Deduction about composition of classes with no relational content in common. (Contributed by RP, 24-Dec-2019.)
(𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)       (𝜑 → (𝐴𝐵) = ∅)
 
Theoremxptrrel 13567 The cross product is always a transitive relation. (Contributed by RP, 24-Dec-2019.)
((𝐴 × 𝐵) ∘ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
 
Theorem0trrel 13568 The empty class is a transitive relation. (Contributed by RP, 24-Dec-2019.)
(∅ ∘ ∅) ⊆ ∅
 
5.8.2  Basic properties of closures
 
Theoremcleq1lem 13569 Equality implies bijection. (Contributed by RP, 9-May-2020.)
(𝐴 = 𝐵 → ((𝐴𝐶𝜑) ↔ (𝐵𝐶𝜑)))
 
Theoremcleq1 13570* Equality of relations implies equality of closures. (Contributed by RP, 9-May-2020.)
(𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} = {𝑟 ∣ (𝑆𝑟𝜑)})
 
Theoremclsslem 13571* The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020.)
(𝑅𝑆 {𝑟 ∣ (𝑅𝑟𝜑)} ⊆ {𝑟 ∣ (𝑆𝑟𝜑)})
 
5.8.3  Definitions and basic properties of transitive closures
 
Syntaxctcl 13572 Extend class notation to include the transitive closure symbol.
class t+
 
Syntaxcrtcl 13573 Extend class notation with reflexive-transitive closure.
class t*
 
Definitiondf-trcl 13574* Transitive closure of a relation. This is the smallest superset which has the transitive property. (Contributed by FL, 27-Jun-2011.)
t+ = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
 
Definitiondf-rtrcl 13575* Reflexive-transitive closure of a relation. This is the smallest superset which is reflexive property over all elements of its domain and range and has the transitive property. (Contributed by FL, 27-Jun-2011.)
t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
 
Theoremtrcleq1 13576* Equality of relations implies equality of transitive closures. (Contributed by RP, 9-May-2020.)
(𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
 
Theoremtrclsslem 13577* The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.)
(𝑅𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
 
Theoremtrcleq2lem 13578 Equality implies bijection. (Contributed by RP, 5-May-2020.)
(𝐴 = 𝐵 → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑅𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
 
Theoremcvbtrcl 13579* Change of bound variable in class of all transitive relations which are supersets of a relation. (Contributed by RP, 5-May-2020.)
{𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑦 ∣ (𝑅𝑦 ∧ (𝑦𝑦) ⊆ 𝑦)}
 
Theoremtrcleq12lem 13580 Equality implies bijection. (Contributed by RP, 9-May-2020.)
((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑅𝐴 ∧ (𝐴𝐴) ⊆ 𝐴) ↔ (𝑆𝐵 ∧ (𝐵𝐵) ⊆ 𝐵)))
 
Theoremtrclexlem 13581 Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 5-May-2020.)
(𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
 
Theoremtrclublem 13582* If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020.)
(𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
 
Theoremtrclubi 13583* The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 2-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
Rel 𝑅    &   𝑅 ∈ V        {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
 
TheoremtrclubiOLD 13584* Obsolete version of trclubi 13583 as of 26-Mar-2021. (Contributed by RP, 2-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Rel 𝑅    &   𝑅𝑉        {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (dom 𝑅 × ran 𝑅)
 
Theoremtrclubgi 13585* The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure. (Contributed by RP, 3-Jan-2020.) (Revised by RP, 28-Apr-2020.) (Revised by AV, 26-Mar-2021.)
𝑅 ∈ V        {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
 
TheoremtrclubgiOLD 13586* Obsolete version of trclubgi 13585 as of 26-Mar-2021. (Contributed by RP, 3-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑅𝑉        {𝑠 ∣ (𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
 
Theoremtrclub 13587* The Cartesian product of the domain and range of a relation is an upper bound for its transitive closure. (Contributed by RP, 17-May-2020.)
((𝑅𝑉 ∧ Rel 𝑅) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (dom 𝑅 × ran 𝑅))
 
Theoremtrclubg 13588* The union with the Cartesian product of its domain and range is an upper bound for a set's transitive closure (as a relation). (Contributed by RP, 17-May-2020.)
(𝑅𝑉 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
 
Theoremtrclfv 13589* The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.)
(𝑅𝑉 → (t+‘𝑅) = {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
 
Theorembrintclab 13590* Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.)
(𝐴 {𝑥𝜑}𝐵 ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
 
Theorembrtrclfv 13591* Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.)
(𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
 
Theorembrcnvtrclfv 13592* Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 9-May-2020.)
((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
 
Theorembrtrclfvcnv 13593* Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020.)
(𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
 
Theorembrcnvtrclfvcnv 13594* Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020.)
((𝑅𝑈𝐴𝑉𝐵𝑊) → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐵𝑟𝐴)))
 
Theoremtrclfvss 13595 The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020.)
((𝑅𝑉𝑆𝑊𝑅𝑆) → (t+‘𝑅) ⊆ (t+‘𝑆))
 
Theoremtrclfvub 13596 The transitive closure of a relation has an upper bound. (Contributed by RP, 28-Apr-2020.)
(𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
 
Theoremtrclfvlb 13597 The transitive closure of a relation has a lower bound. (Contributed by RP, 28-Apr-2020.)
(𝑅𝑉𝑅 ⊆ (t+‘𝑅))
 
Theoremtrclfvcotr 13598 The transitive closure of a relation is a transitive relation. (Contributed by RP, 29-Apr-2020.)
(𝑅𝑉 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
 
Theoremtrclfvlb2 13599 The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.)
(𝑅𝑉 → (𝑅𝑅) ⊆ (t+‘𝑅))
 
Theoremtrclfvlb3 13600 The transitive closure of a relation has a lower bound. (Contributed by RP, 8-May-2020.)
(𝑅𝑉 → (𝑅 ∪ (𝑅𝑅)) ⊆ (t+‘𝑅))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >