MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimvw Structured version   Visualization version   GIF version

Theorem spimvw 1914
Description: Specialization. Lemma 8 of [KalishMontague] p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
spimvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimvw (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spimvw
StepHypRef Expression
1 ax-5 1827 . 2 𝜓 → ∀𝑥 ¬ 𝜓)
2 spimvw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spimw 1913 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by:  cbvalivw  1921  alcomiw  1958  fvn0ssdmfun  6258
  Copyright terms: Public domain W3C validator