MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalivw Structured version   Visualization version   GIF version

Theorem cbvalivw 1921
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
cbvalivw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalivw (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvalivw
StepHypRef Expression
1 cbvalivw.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21spimvw 1914 . 2 (∀𝑥𝜑𝜓)
32alrimiv 1842 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by:  alcomiw  1958  cbvaev  1966  axc11next  37629
  Copyright terms: Public domain W3C validator