Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvalivw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
cbvalivw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
cbvalivw | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalivw.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
2 | 1 | spimvw 1914 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
3 | 2 | alrimiv 1842 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 |
This theorem depends on definitions: df-bi 196 df-ex 1696 |
This theorem is referenced by: alcomiw 1958 cbvaev 1966 axc11next 37629 |
Copyright terms: Public domain | W3C validator |