HomeHome Metamath Proof Explorer
Theorem List (p. 238 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 23701-23800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremply1divalg 23701* The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   𝐵 = (Base‘𝑃)    &    = (-g𝑃)    &    0 = (0g𝑃)    &    = (.r𝑃)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑𝐺0 )    &   (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)    &   𝑈 = (Unit‘𝑅)       (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
 
Theoremply1divalg2 23702* Reverse the order of multiplication in ply1divalg 23701 via the opposite ring. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐷 = ( deg1𝑅)    &   𝐵 = (Base‘𝑃)    &    = (-g𝑃)    &    0 = (0g𝑃)    &    = (.r𝑃)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)    &   (𝜑𝐺0 )    &   (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)    &   𝑈 = (Unit‘𝑅)       (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝑞 𝐺))) < (𝐷𝐺))
 
Theoremuc1pval 23703* Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑃)    &   𝐷 = ( deg1𝑅)    &   𝐶 = (Unic1p𝑅)    &   𝑈 = (Unit‘𝑅)       𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
 
Theoremisuc1p 23704 Being a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑃)    &   𝐷 = ( deg1𝑅)    &   𝐶 = (Unic1p𝑅)    &   𝑈 = (Unit‘𝑅)       (𝐹𝐶 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈))
 
Theoremmon1pval 23705* Value of the set of monic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑀 = (Monic1p𝑅)    &    1 = (1r𝑅)       𝑀 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) = 1 )}
 
Theoremismon1p 23706 Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑀 = (Monic1p𝑅)    &    1 = (1r𝑅)       (𝐹𝑀 ↔ (𝐹𝐵𝐹0 ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1 ))
 
Theoremuc1pcl 23707 Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Unic1p𝑅)       (𝐹𝐶𝐹𝐵)
 
Theoremmon1pcl 23708 Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑀 = (Monic1p𝑅)       (𝐹𝑀𝐹𝐵)
 
Theoremuc1pn0 23709 Unitic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝐶 = (Unic1p𝑅)       (𝐹𝐶𝐹0 )
 
Theoremmon1pn0 23710 Monic polynomials are not zero. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &    0 = (0g𝑃)    &   𝑀 = (Monic1p𝑅)       (𝐹𝑀𝐹0 )
 
Theoremuc1pdeg 23711 Unitic polynomials have nonnegative degrees. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝐶 = (Unic1p𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐶) → (𝐷𝐹) ∈ ℕ0)
 
Theoremuc1pldg 23712 Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝐶 = (Unic1p𝑅)       (𝐹𝐶 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝑈)
 
Theoremmon1pldg 23713 Unitic polynomials have one leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐷 = ( deg1𝑅)    &    1 = (1r𝑅)    &   𝑀 = (Monic1p𝑅)       (𝐹𝑀 → ((coe1𝐹)‘(𝐷𝐹)) = 1 )
 
Theoremmon1puc1p 23714 Monic polynomials are unitic. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐶 = (Unic1p𝑅)    &   𝑀 = (Monic1p𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑀) → 𝑋𝐶)
 
Theoremuc1pmon1p 23715 Make a unitic polynomial monic by multiplying a factor to normalize the leading coefficient. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐶 = (Unic1p𝑅)    &   𝑀 = (Monic1p𝑅)    &   𝑃 = (Poly1𝑅)    &    · = (.r𝑃)    &   𝐴 = (algSc‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ 𝑀)
 
Theoremdeg1submon1p 23716 The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐷 = ( deg1𝑅)    &   𝑂 = (Monic1p𝑅)    &   𝑃 = (Poly1𝑅)    &    = (-g𝑃)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹𝑂)    &   (𝜑 → (𝐷𝐹) = 𝑋)    &   (𝜑𝐺𝑂)    &   (𝜑 → (𝐷𝐺) = 𝑋)       (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝑋)
 
Theoremq1pval 23717* Value of the univariate polynomial quotient function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑄 = (quot1p𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = ( deg1𝑅)    &    = (-g𝑃)    &    · = (.r𝑃)       ((𝐹𝐵𝐺𝐵) → (𝐹𝑄𝐺) = (𝑞𝐵 (𝐷‘(𝐹 (𝑞 · 𝐺))) < (𝐷𝐺)))
 
Theoremq1peqb 23718 Characterizing property of the polynomial quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑄 = (quot1p𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = ( deg1𝑅)    &    = (-g𝑃)    &    · = (.r𝑃)    &   𝐶 = (Unic1p𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑋𝐵 ∧ (𝐷‘(𝐹 (𝑋 · 𝐺))) < (𝐷𝐺)) ↔ (𝐹𝑄𝐺) = 𝑋))
 
Theoremq1pcl 23719 Closure of the quotient by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑄 = (quot1p𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Unic1p𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
 
Theoremr1pval 23720 Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐸 = (rem1p𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑄 = (quot1p𝑅)    &    · = (.r𝑃)    &    = (-g𝑃)       ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
 
Theoremr1pcl 23721 Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐸 = (rem1p𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Unic1p𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) ∈ 𝐵)
 
Theoremr1pdeglt 23722 The remainder has a degree smaller than the divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐸 = (rem1p𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Unic1p𝑅)    &   𝐷 = ( deg1𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹𝐸𝐺)) < (𝐷𝐺))
 
Theoremr1pid 23723 Express the original polynomial 𝐹 as 𝐹 = (𝑞 · 𝐺) + 𝑟 using the quotient and remainder functions for 𝑞 and 𝑟. (Contributed by Mario Carneiro, 5-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Unic1p𝑅)    &   𝑄 = (quot1p𝑅)    &   𝐸 = (rem1p𝑅)    &    · = (.r𝑃)    &    + = (+g𝑃)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹 = (((𝐹𝑄𝐺) · 𝐺) + (𝐹𝐸𝐺)))
 
Theoremdvdsq1p 23724 Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &    = (∥r𝑃)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Unic1p𝑅)    &    · = (.r𝑃)    &   𝑄 = (quot1p𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
 
Theoremdvdsr1p 23725 Divisibility in a polynomial ring in terms of the remainder. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝑃 = (Poly1𝑅)    &    = (∥r𝑃)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Unic1p𝑅)    &    0 = (0g𝑃)    &   𝐸 = (rem1p𝑅)       ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ (𝐹𝐸𝐺) = 0 ))
 
Theoremply1remlem 23726 A term of the form 𝑥𝑁 is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝑋 = (var1𝑅)    &    = (-g𝑃)    &   𝐴 = (algSc‘𝑃)    &   𝐺 = (𝑋 (𝐴𝑁))    &   𝑂 = (eval1𝑅)    &   (𝜑𝑅 ∈ NzRing)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑁𝐾)    &   𝑈 = (Monic1p𝑅)    &   𝐷 = ( deg1𝑅)    &    0 = (0g𝑅)       (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))
 
Theoremply1rem 23727 The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15098). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝑋 = (var1𝑅)    &    = (-g𝑃)    &   𝐴 = (algSc‘𝑃)    &   𝐺 = (𝑋 (𝐴𝑁))    &   𝑂 = (eval1𝑅)    &   (𝜑𝑅 ∈ NzRing)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑁𝐾)    &   (𝜑𝐹𝐵)    &   𝐸 = (rem1p𝑅)       (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))
 
Theoremfacth1 23728 The factor theorem and its converse. A polynomial 𝐹 has a root at 𝐴 iff 𝐺 = 𝑥𝐴 is a factor of 𝐹. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝑋 = (var1𝑅)    &    = (-g𝑃)    &   𝐴 = (algSc‘𝑃)    &   𝐺 = (𝑋 (𝐴𝑁))    &   𝑂 = (eval1𝑅)    &   (𝜑𝑅 ∈ NzRing)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑁𝐾)    &   (𝜑𝐹𝐵)    &    0 = (0g𝑅)    &    = (∥r𝑃)       (𝜑 → (𝐺 𝐹 ↔ ((𝑂𝐹)‘𝑁) = 0 ))
 
Theoremfta1glem1 23729 Lemma for fta1g 23731. (Contributed by Mario Carneiro, 7-Jun-2016.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑂 = (eval1𝑅)    &   𝑊 = (0g𝑅)    &    0 = (0g𝑃)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐹𝐵)    &   𝐾 = (Base‘𝑅)    &   𝑋 = (var1𝑅)    &    = (-g𝑃)    &   𝐴 = (algSc‘𝑃)    &   𝐺 = (𝑋 (𝐴𝑇))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → (𝐷𝐹) = (𝑁 + 1))    &   (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))       (𝜑 → (𝐷‘(𝐹(quot1p𝑅)𝐺)) = 𝑁)
 
Theoremfta1glem2 23730* Lemma for fta1g 23731. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑂 = (eval1𝑅)    &   𝑊 = (0g𝑅)    &    0 = (0g𝑃)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐹𝐵)    &   𝐾 = (Base‘𝑅)    &   𝑋 = (var1𝑅)    &    = (-g𝑃)    &   𝐴 = (algSc‘𝑃)    &   𝐺 = (𝑋 (𝐴𝑇))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → (𝐷𝐹) = (𝑁 + 1))    &   (𝜑𝑇 ∈ ((𝑂𝐹) “ {𝑊}))    &   (𝜑 → ∀𝑔𝐵 ((𝐷𝑔) = 𝑁 → (#‘((𝑂𝑔) “ {𝑊})) ≤ (𝐷𝑔)))       (𝜑 → (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
 
Theoremfta1g 23731 The one-sided fundamental theorem of algebra. A polynomial of degree 𝑛 has at most 𝑛 roots. Unlike the real fundamental theorem fta 24606, which is only true in and other algebraically closed fields, this is true in any integral domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑂 = (eval1𝑅)    &   𝑊 = (0g𝑅)    &    0 = (0g𝑃)    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑𝐹𝐵)    &   (𝜑𝐹0 )       (𝜑 → (#‘((𝑂𝐹) “ {𝑊})) ≤ (𝐷𝐹))
 
Theoremfta1blem 23732 Lemma for fta1b 23733. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑂 = (eval1𝑅)    &   𝑊 = (0g𝑅)    &    0 = (0g𝑃)    &   𝐾 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝑋 = (var1𝑅)    &    · = ( ·𝑠𝑃)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑀𝐾)    &   (𝜑𝑁𝐾)    &   (𝜑 → (𝑀 × 𝑁) = 𝑊)    &   (𝜑𝑀𝑊)    &   (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (#‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))       (𝜑𝑁 = 𝑊)
 
Theoremfta1b 23733* The assumption that 𝑅 be a domain in fta1g 23731 is necessary. Here we show that the statement is strong enough to prove that 𝑅 is a domain. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑂 = (eval1𝑅)    &   𝑊 = (0g𝑅)    &    0 = (0g𝑃)       (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ NzRing ∧ ∀𝑓 ∈ (𝐵 ∖ { 0 })(#‘((𝑂𝑓) “ {𝑊})) ≤ (𝐷𝑓)))
 
Theoremdrnguc1p 23734 Over a division ring, all nonzero polynomials are unitic. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐵 = (Base‘𝑃)    &    0 = (0g𝑃)    &   𝐶 = (Unic1p𝑅)       ((𝑅 ∈ DivRing ∧ 𝐹𝐵𝐹0 ) → 𝐹𝐶)
 
Theoremig1peu 23735* There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
𝑃 = (Poly1𝑅)    &   𝑈 = (LIdeal‘𝑃)    &    0 = (0g𝑃)    &   𝑀 = (Monic1p𝑅)    &   𝐷 = ( deg1𝑅)       ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
 
Theoremig1pval 23736* Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &    0 = (0g𝑃)    &   𝑈 = (LIdeal‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑀 = (Monic1p𝑅)       ((𝑅𝑉𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
 
Theoremig1pval2 23737 Generator of the zero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &    0 = (0g𝑃)       (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 )
 
Theoremig1pval3 23738 Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &    0 = (0g𝑃)    &   𝑈 = (LIdeal‘𝑃)    &   𝐷 = ( deg1𝑅)    &   𝑀 = (Monic1p𝑅)       ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
 
Theoremig1pcl 23739 The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &   𝑈 = (LIdeal‘𝑃)       ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
 
Theoremig1pdvds 23740 The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &   𝑈 = (LIdeal‘𝑃)    &    = (∥r𝑃)       ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)
 
Theoremig1prsp 23741 Any ideal of polynomials over a division ring is generated by the ideal's canonical generator. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑃 = (Poly1𝑅)    &   𝐺 = (idlGen1p𝑅)    &   𝑈 = (LIdeal‘𝑃)    &   𝐾 = (RSpan‘𝑃)       ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → 𝐼 = (𝐾‘{(𝐺𝐼)}))
 
Theoremply1lpir 23742 The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ DivRing → 𝑃 ∈ LPIR)
 
Theoremply1pid 23743 The polynomials over a field are a PID. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝑃 = (Poly1𝑅)       (𝑅 ∈ Field → 𝑃 ∈ PID)
 
14.1.3  Elementary properties of complex polynomials
 
Syntaxcply 23744 Extend class notation to include the set of complex polynomials.
class Poly
 
Syntaxcidp 23745 Extend class notation to include the identity polynomial.
class Xp
 
Syntaxccoe 23746 Extend class notation to include the coefficient function on polynomials.
class coeff
 
Syntaxcdgr 23747 Extend class notation to include the degree function on polynomials.
class deg
 
Definitiondf-ply 23748* Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Definitiondf-idp 23749 Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Xp = ( I ↾ ℂ)
 
Definitiondf-coe 23750* Define the coefficient function for a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
coeff = (𝑓 ∈ (Poly‘ℂ) ↦ (𝑎 ∈ (ℂ ↑𝑚0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
 
Definitiondf-dgr 23751 Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
 
Theoremplyco0 23752* Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.)
((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
 
Theoremplyval 23753* Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Theoremplybss 23754 Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
 
Theoremelply 23755* Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
 
Theoremelply2 23756* The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
 
Theoremplyun0 23757 The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
(Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
 
Theoremplyf 23758 The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
 
Theoremplyss 23759 The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
 
Theoremplyssc 23760 Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
(Poly‘𝑆) ⊆ (Poly‘ℂ)
 
Theoremelplyr 23761* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremelplyd 23762* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremply1termlem 23763* Lemma for ply1term 23764. (Contributed by Mario Carneiro, 26-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
 
Theoremply1term 23764* A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
 
Theoremplypow 23765* A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧𝑁)) ∈ (Poly‘𝑆))
 
Theoremplyconst 23766 A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆))
 
Theoremne0p 23767 A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014.)
((𝐴 ∈ ℂ ∧ (𝐹𝐴) ≠ 0) → 𝐹 ≠ 0𝑝)
 
Theoremply0 23768 The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))
 
Theoremplyid 23769 The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆))
 
Theoremplyeq0lem 23770* Lemma for plyeq0 23771. If 𝐴 is the coefficient function for a nonzero polynomial such that 𝑃(𝑧) = Σ𝑘 ∈ ℕ0𝐴(𝑘) · 𝑧𝑘 = 0 for every 𝑧 ∈ ℂ and 𝐴(𝑀) is the nonzero leading coefficient, then the function 𝐹(𝑧) = 𝑃(𝑧) / 𝑧𝑀 is a sum of powers of 1 / 𝑧, and so the limit of this function as 𝑧 ⇝ +∞ is the constant term, 𝐴(𝑀). But 𝐹(𝑧) = 0 everywhere, so this limit is also equal to zero so that 𝐴(𝑀) = 0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))    &   𝑀 = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )    &   (𝜑 → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)        ¬ 𝜑
 
Theoremplyeq0 23771* If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 23750 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))       (𝜑𝐴 = (ℕ0 × {0}))
 
Theoremplypf1 23772 Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.)
𝑅 = (ℂflds 𝑆)    &   𝑃 = (Poly1𝑅)    &   𝐴 = (Base‘𝑃)    &   𝐸 = (eval1‘ℂfld)       (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))
 
Theoremplyaddlem1 23773* Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
 
Theoremplymullem1 23774* Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
 
Theoremplyaddlem 23775* Lemma for plyadd 23777. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymullem 23776* Lemma for plymul 23778. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplyadd 23777* The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymul 23778* The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplysub 23779* The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑 → -1 ∈ 𝑆)       (𝜑 → (𝐹𝑓𝐺) ∈ (Poly‘𝑆))
 
Theoremplyaddcl 23780 The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + 𝐺) ∈ (Poly‘ℂ))
 
Theoremplymulcl 23781 The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
 
Theoremplysubcl 23782 The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓𝐺) ∈ (Poly‘ℂ))
 
Theoremcoeval 23783* Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (𝑎 ∈ (ℂ ↑𝑚0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
 
Theoremcoeeulem 23784* Lemma for coeeu 23785. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐴 ∈ (ℂ ↑𝑚0))    &   (𝜑𝐵 ∈ (ℂ ↑𝑚0))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑𝐴 = 𝐵)
 
Theoremcoeeu 23785* Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑𝑚0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
 
Theoremcoelem 23786* Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑𝑚0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧𝑘))))))
 
Theoremcoeeq 23787* If 𝐴 satisfies the properties of the coefficient function, it must be equal to the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))       (𝜑 → (coeff‘𝐹) = 𝐴)
 
Theoremdgrval 23788 Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)       (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
 
Theoremdgrlem 23789* Lemma for dgrcl 23793 and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)       (𝐹 ∈ (Poly‘𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ ∃𝑛 ∈ ℤ ∀𝑥 ∈ (𝐴 “ (ℂ ∖ {0}))𝑥𝑛))
 
Theoremcoef 23790 The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)       (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
 
Theoremcoef2 23791 The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)       ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 𝐴:ℕ0𝑆)
 
Theoremcoef3 23792 The domain and range of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)       (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
 
Theoremdgrcl 23793 The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
 
Theoremdgrub 23794 If the 𝑀-th coefficient of 𝐹 is nonzero, then the degree of 𝐹 is at least 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)    &   𝑁 = (deg‘𝐹)       ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
 
Theoremdgrub2 23795 All the coefficients above the degree of 𝐹 are zero. (Contributed by Mario Carneiro, 23-Jul-2014.)
𝐴 = (coeff‘𝐹)    &   𝑁 = (deg‘𝐹)       (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
 
Theoremdgrlb 23796 If all the coefficients above 𝑀 are zero, then the degree of 𝐹 is at most 𝑀. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)    &   𝑁 = (deg‘𝐹)       ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)
 
Theoremcoeidlem 23797* Lemma for coeid 23798. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)    &   𝑁 = (deg‘𝐹)    &   (𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))))       (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
 
Theoremcoeid 23798* Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)    &   𝑁 = (deg‘𝐹)       (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
 
Theoremcoeid2 23799* Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)    &   𝑁 = (deg‘𝐹)       ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑋𝑘)))
 
Theoremcoeid3 23800* Reconstruct a polynomial as an explicit sum of the coefficient function up to at least the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
𝐴 = (coeff‘𝐹)    &   𝑁 = (deg‘𝐹)       ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ (ℤ𝑁) ∧ 𝑋 ∈ ℂ) → (𝐹𝑋) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑋𝑘)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >