HomeHome Metamath Proof Explorer
Theorem List (p. 304 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 30301-30400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembnj1090 30301* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))    &   (𝜂′[𝑗 / 𝑖]𝜂)    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))    &   ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))       ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 (𝜌𝜂))
 
Theorembnj1093 30302* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑗(((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓𝑖) ⊆ 𝐵)    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))       ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))
 
Theorembnj1097 30303 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))       ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
 
Theorembnj1110 30304* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))    &   (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))       𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
 
Theorembnj1112 30305* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))       (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
 
Theorembnj1118 30306* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   𝐷 = (ω ∖ {∅})    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))    &   (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))       𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
 
Theorembnj1121 30307 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 𝜂)    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       ((𝜃𝜏𝜒𝜁) → 𝑧𝐵)
 
Theorembnj1123 30308* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   (𝜂′[𝑗 / 𝑖]𝜂)       (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
 
Theorembnj1030 30309* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))    &   (𝜑′[𝑗 / 𝑖]𝜑)    &   (𝜓′[𝑗 / 𝑖]𝜓)    &   (𝜒′[𝑗 / 𝑖]𝜒)    &   (𝜃′[𝑗 / 𝑖]𝜃)    &   (𝜏′[𝑗 / 𝑖]𝜏)    &   (𝜁′[𝑗 / 𝑖]𝜁)    &   (𝜂′[𝑗 / 𝑖]𝜂)    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1124 30310 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1133 30311* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))    &   ((𝑖𝑛𝜏) → 𝜃)       (𝜒 → ∀𝑖𝑛 𝜃)
 
Theorembnj1128 30312* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝜒 → (𝑓𝑖) ⊆ 𝐴))    &   (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))    &   (𝜑′[𝑗 / 𝑖]𝜑)    &   (𝜓′[𝑗 / 𝑖]𝜓)    &   (𝜒′[𝑗 / 𝑖]𝜒)    &   (𝜃′[𝑗 / 𝑖]𝜃)       (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
 
Theorembnj1127 30313 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
 
Theorembnj1125 30314 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj1145 30315* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)))        trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
 
Theorembnj1147 30316 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
 
Theorembnj1137 30317* Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))       ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
 
Theorembnj1148 30318 Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)
 
Theorembnj1136 30319* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))       ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
 
Theorembnj1152 30320 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌𝐴𝑌𝑅𝑋))
 
Theorembnj1154 30321* Property of Fr. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theorembnj1171 30322 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓) → 𝐵𝐴)    &   𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))       𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
 
Theorembnj1172 30323 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))    &   ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))       𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
 
Theorembnj1173 30324 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))    &   ((𝜑𝜓) → 𝑅 FrSe 𝐴)    &   ((𝜑𝜓) → 𝑋𝐴)       ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))
 
Theorembnj1174 30325 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   𝑧𝑤((𝜑𝜓) → (𝑧𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐶))))    &   (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))       𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
 
Theorembnj1175 30326 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   (𝜒 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))    &   (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))       (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))
 
Theorembnj1176 30327* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))    &   ((𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V) → ∃𝑧𝐶𝑤𝐶 ¬ 𝑤𝑅𝑧)       𝑧𝑤((𝜑𝜓) → (𝑧𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐶))))
 
Theorembnj1177 30328 Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))    &   𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   ((𝜑𝜓) → 𝑅 FrSe 𝐴)    &   ((𝜑𝜓) → 𝐵𝐴)    &   ((𝜑𝜓) → 𝑋𝐴)       ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))
 
Theorembnj1186 30329* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))       ((𝜑𝜓) → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑅𝑧)
 
Theorembnj1190 30330* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))    &   (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))       ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
 
Theorembnj1189 30331* Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))    &   (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))    &   (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)       (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
21.4.3  The existence of a minimal element in certain classes
 
Theorembnj69 30332* Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theorembnj1228 30333* Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑤𝐵 → ∀𝑥 𝑤𝐵)       ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
21.4.4  Well-founded induction
 
Theorembnj1204 30334* Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))       ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
 
Theorembnj1234 30335* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐷 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}       𝐶 = 𝐷
 
Theorembnj1245 30336* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))    &   𝑍 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐾 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑍))}       (𝜑 → dom 𝐴)
 
Theorembnj1256 30337* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))       (𝜑 → ∃𝑑𝐵 𝑔 Fn 𝑑)
 
Theorembnj1259 30338* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))       (𝜑 → ∃𝑑𝐵 Fn 𝑑)
 
Theorembnj1253 30339* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))       (𝜑𝐸 ≠ ∅)
 
Theorembnj1279 30340* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))       ((𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥) → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅)
 
Theorembnj1286 30341* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))       (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷)
 
Theorembnj1280 30342* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))    &   (𝜓 → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅)       (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
 
Theorembnj1296 30343* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )    &   𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))    &   (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))    &   (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))    &   𝑍 = ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐾 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺𝑍))}    &   𝑊 = ⟨𝑥, ( ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐿 = { ∣ ∃𝑑𝐵 ( Fn 𝑑 ∧ ∀𝑥𝑑 (𝑥) = (𝐺𝑊))}       (𝜓 → (𝑔𝑥) = (𝑥))
 
Theorembnj1309 30344* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}       (𝑤𝐵 → ∀𝑥 𝑤𝐵)
 
Theorembnj1307 30345* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝑤𝐵 → ∀𝑥 𝑤𝐵)       (𝑤𝐶 → ∀𝑥 𝑤𝐶)
 
Theorembnj1311 30346* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )       ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
 
Theorembnj1318 30347 Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑋 = 𝑌 → trCl(𝑋, 𝐴, 𝑅) = trCl(𝑌, 𝐴, 𝑅))
 
Theorembnj1326 30348* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐷 = (dom 𝑔 ∩ dom )       ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
 
Theorembnj1321 30349* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))       ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
 
Theorembnj1364 30350 Property of FrSe. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑅 FrSe 𝐴𝑅 Se 𝐴)
 
Theorembnj1371 30351* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))       (𝑓𝐻 → Fun 𝑓)
 
Theorembnj1373 30352* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   (𝜏′[𝑦 / 𝑥]𝜏)       (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
 
Theorembnj1374 30353* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}       (𝑓𝐻𝑓𝐶)
 
Theorembnj1384 30354* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻       (𝑅 FrSe 𝐴 → Fun 𝑃)
 
Theorembnj1388 30355* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)       (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′)
 
Theorembnj1398 30356* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   (𝜃 ↔ (𝜒𝑧 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))    &   (𝜂 ↔ (𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑧 ∈ ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))       (𝜒 𝑦 ∈ pred (𝑥, 𝐴, 𝑅)({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)) = dom 𝑃)
 
Theorembnj1413 30357* Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))       ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
 
Theorembnj1408 30358* Technical lemma for bnj1414 30359. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))    &   𝐶 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))       ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
 
Theorembnj1414 30359* Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))       ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
 
Theorembnj1415 30360* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻       (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
 
Theorembnj1416 30361 Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))       (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
 
Theorembnj1418 30362 Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
 
Theorembnj1417 30363* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
(𝜑𝑅 FrSe 𝐴)    &   (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))    &   (𝜃 ↔ (𝜑𝑥𝐴𝜒))    &   𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))       (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
 
Theorembnj1421 30364* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   (𝜒 → Fun 𝑃)    &   (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))       (𝜒 → Fun 𝑄)
 
Theorembnj1444 30365* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜃 ↔ (𝜒𝑧𝐸))    &   (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))    &   (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜌 ↔ (𝜁𝑓𝐻𝑧 ∈ dom 𝑓))       (𝜌 → ∀𝑦𝜌)
 
Theorembnj1445 30366* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜃 ↔ (𝜒𝑧𝐸))    &   (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))    &   (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜌 ↔ (𝜁𝑓𝐻𝑧 ∈ dom 𝑓))    &   (𝜎 ↔ (𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))    &   (𝜑 ↔ (𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))    &   𝑋 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩       (𝜎 → ∀𝑑𝜎)
 
Theorembnj1446 30367* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩       ((𝑄𝑧) = (𝐺𝑊) → ∀𝑑(𝑄𝑧) = (𝐺𝑊))
 
Theorembnj1447 30368* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩       ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
 
Theorembnj1448 30369* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩       ((𝑄𝑧) = (𝐺𝑊) → ∀𝑓(𝑄𝑧) = (𝐺𝑊))
 
Theorembnj1449 30370* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜃 ↔ (𝜒𝑧𝐸))    &   (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))    &   (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))       (𝜁 → ∀𝑓𝜁)
 
Theorembnj1442 30371* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜃 ↔ (𝜒𝑧𝐸))    &   (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))       (𝜂 → (𝑄𝑧) = (𝐺𝑊))
 
Theorembnj1450 30372* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜃 ↔ (𝜒𝑧𝐸))    &   (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))    &   (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))    &   (𝜌 ↔ (𝜁𝑓𝐻𝑧 ∈ dom 𝑓))    &   (𝜎 ↔ (𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))    &   (𝜑 ↔ (𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))    &   𝑋 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩       (𝜁 → (𝑄𝑧) = (𝐺𝑊))
 
Theorembnj1423 30373* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))       (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
 
Theorembnj1452 30374* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))       (𝜒𝐸𝐵)
 
Theorembnj1466 30375* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})       (𝑤𝑄 → ∀𝑓 𝑤𝑄)
 
Theorembnj1467 30376* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})       (𝑤𝑄 → ∀𝑑 𝑤𝑄)
 
Theorembnj1463 30377* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))    &   (𝜒𝑄 ∈ V)    &   (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))    &   (𝜒𝑄 Fn 𝐸)    &   (𝜒𝐸𝐵)       (𝜒𝑄𝐶)
 
Theorembnj1489 30378* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})       (𝜒𝑄 ∈ V)
 
Theorembnj1491 30379* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))       ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
 
Theorembnj1312 30380* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))    &   𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}    &   (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))    &   (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))    &   (𝜏′[𝑦 / 𝑥]𝜏)    &   𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}    &   𝑃 = 𝐻    &   𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})    &   𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩    &   𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))       (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
 
Theorembnj1493 30381* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}       (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
 
Theorembnj1497 30382* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}       𝑔𝐶 Fun 𝑔
 
Theorembnj1498 30383* Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶       (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
 
21.4.5  Well-founded recursion, part 1 of 3
 
Theorembnj60 30384* Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶       (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
 
Theorembnj1514 30385* Technical lemma for bnj1500 30390. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}       (𝑓𝐶 → ∀𝑥 ∈ dom 𝑓(𝑓𝑥) = (𝐺𝑌))
 
Theorembnj1518 30386* Technical lemma for bnj1500 30390. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))    &   (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))       (𝜓 → ∀𝑑𝜓)
 
Theorembnj1519 30387* Technical lemma for bnj1500 30390. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶       ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
 
Theorembnj1520 30388* Technical lemma for bnj1500 30390. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶       ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑓(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
 
Theorembnj1501 30389* Technical lemma for bnj1500 30390. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))    &   (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))    &   (𝜒 ↔ (𝜓𝑑𝐵 ∧ dom 𝑓 = 𝑑))       (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
 
21.4.6  Well-founded recursion, part 2 of 3
 
Theorembnj1500 30390* Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶       (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
 
Theorembnj1525 30391* Technical lemma for bnj1522 30394. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))    &   (𝜓 ↔ (𝜑𝐹𝐻))       (𝜓 → ∀𝑥𝜓)
 
Theorembnj1529 30392* Technical lemma for bnj1522 30394. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))    &   (𝑤𝐹 → ∀𝑥 𝑤𝐹)       (𝜒 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
 
Theorembnj1523 30393* Technical lemma for bnj1522 30394. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶    &   (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))    &   (𝜓 ↔ (𝜑𝐹𝐻))    &   (𝜒 ↔ (𝜓𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))    &   𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}    &   (𝜃 ↔ (𝜒𝑦𝐷 ∧ ∀𝑧𝐷 ¬ 𝑧𝑅𝑦))       ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
 
21.4.7  Well-founded recursion, part 3 of 3
 
Theorembnj1522 30394* Well-founded recursion, part 3 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}    &   𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩    &   𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}    &   𝐹 = 𝐶       ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
 
21.5  Mathbox for Mario Carneiro
 
21.5.1  Predicate calculus with all distinct variables
 
Axiomax-7d 30395* Distinct variable version of ax-11 2021. (Contributed by Mario Carneiro, 14-Aug-2015.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Axiomax-8d 30396* Distinct variable version of ax-7 1922. (Contributed by Mario Carneiro, 14-Aug-2015.)
(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Axiomax-9d1 30397 Distinct variable version of ax-6 1875, equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015.)
¬ ∀𝑥 ¬ 𝑥 = 𝑥
 
Axiomax-9d2 30398* Distinct variable version of ax-6 1875, distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015.)
¬ ∀𝑥 ¬ 𝑥 = 𝑦
 
Axiomax-10d 30399* Distinct variable version of axc11n 2295. (Contributed by Mario Carneiro, 14-Aug-2015.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
 
Axiomax-11d 30400* Distinct variable version of ax-12 2034. (Contributed by Mario Carneiro, 14-Aug-2015.)
(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >