MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyf Structured version   Visualization version   GIF version

Theorem plyf 23758
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyf (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)

Proof of Theorem plyf
Dummy variables 𝑘 𝑎 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 23755 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 479 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 fzfid 12634 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4 plybss 23754 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
5 0cnd 9912 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ)
65snssd 4281 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ)
74, 6unssd 3751 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ)
87ad2antrr 758 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ)
98adantr 480 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ)
10 simplrr 797 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
11 cnex 9896 . . . . . . . . . . . 12 ℂ ∈ V
12 ssexg 4732 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
138, 11, 12sylancl 693 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 11175 . . . . . . . . . . 11 0 ∈ V
15 elmapg 7757 . . . . . . . . . . 11 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 693 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1710, 16mpbid 221 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
18 elfznn0 12302 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
19 ffvelrn 6265 . . . . . . . . 9 ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
2017, 18, 19syl2an 493 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
219, 20sseldd 3569 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
22 simpr 476 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 expcl 12740 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
2422, 18, 23syl2an 493 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧𝑘) ∈ ℂ)
2521, 24mulcld 9939 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
263, 25fsumcl 14311 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
27 eqid 2610 . . . . 5 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
2826, 27fmptd 6292 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ)
29 feq1 5939 . . . 4 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ))
3028, 29syl5ibrcom 236 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
3130rexlimdvva 3020 . 2 (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
322, 31mpd 15 1 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cun 3538  wss 3540  {csn 4125  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  0cc0 9815   · cmul 9820  0cn0 11169  ...cfz 12197  cexp 12722  Σcsu 14264  Polycply 23744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-ply 23748
This theorem is referenced by:  plysub  23779  plyco  23801  0dgrb  23806  coe0  23816  coesub  23817  dgrsub  23832  dgrcolem1  23833  dgrcolem2  23834  dgrco  23835  plymul0or  23840  plyreres  23842  dvply2g  23844  dvnply2  23846  plycpn  23848  plydivlem3  23854  plydivlem4  23855  plydiveu  23857  plyremlem  23863  plyrem  23864  facth  23865  fta1lem  23866  fta1  23867  quotcan  23868  vieta1lem1  23869  vieta1lem2  23870  vieta1  23871  plyexmo  23872  elaa  23875  elqaalem3  23880  aannenlem1  23887  aalioulem2  23892  aalioulem3  23893  aalioulem4  23894  taylthlem2  23932  ftalem2  24600  ftalem3  24601  ftalem4  24602  ftalem5  24603  ftalem7  24605  basellem4  24610  basellem5  24611  plymul02  29949  plymulx0  29950  signsplypnf  29953  signsply0  29954  mpaaeu  36739  rngunsnply  36762
  Copyright terms: Public domain W3C validator