MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivlem3 Structured version   Visualization version   GIF version

Theorem plydivlem3 23854
Description: Lemma for plydivex 23856. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
plydiv.0 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
Assertion
Ref Expression
plydivlem3 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivlem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plybss 23754 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3 ply0 23768 . . 3 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))
41, 2, 33syl 18 . 2 (𝜑 → 0𝑝 ∈ (Poly‘𝑆))
5 plydiv.0 . . 3 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
6 cnex 9896 . . . . . . 7 ℂ ∈ V
76a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
8 plyf 23758 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
9 ffn 5958 . . . . . . 7 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
101, 8, 93syl 18 . . . . . 6 (𝜑𝐹 Fn ℂ)
11 plydiv.g . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘𝑆))
12 plyf 23758 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
13 ffn 5958 . . . . . . . 8 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
1411, 12, 133syl 18 . . . . . . 7 (𝜑𝐺 Fn ℂ)
15 plyf 23758 . . . . . . . 8 (0𝑝 ∈ (Poly‘𝑆) → 0𝑝:ℂ⟶ℂ)
16 ffn 5958 . . . . . . . 8 (0𝑝:ℂ⟶ℂ → 0𝑝 Fn ℂ)
174, 15, 163syl 18 . . . . . . 7 (𝜑 → 0𝑝 Fn ℂ)
18 inidm 3784 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
1914, 17, 7, 7, 18offn 6806 . . . . . 6 (𝜑 → (𝐺𝑓 · 0𝑝) Fn ℂ)
20 eqidd 2611 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = (𝐹𝑧))
21 eqidd 2611 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) = (𝐺𝑧))
22 0pval 23244 . . . . . . . . 9 (𝑧 ∈ ℂ → (0𝑝𝑧) = 0)
2322adantl 481 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (0𝑝𝑧) = 0)
2414, 17, 7, 7, 18, 21, 23ofval 6804 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑓 · 0𝑝)‘𝑧) = ((𝐺𝑧) · 0))
2511, 12syl 17 . . . . . . . . 9 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelrnda 6267 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726mul01d 10114 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧) · 0) = 0)
2824, 27eqtrd 2644 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑓 · 0𝑝)‘𝑧) = 0)
291, 8syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
3029ffvelrnda 6267 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
3130subid1d 10260 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐹𝑧) − 0) = (𝐹𝑧))
327, 10, 19, 10, 20, 28, 31offveq 6816 . . . . 5 (𝜑 → (𝐹𝑓 − (𝐺𝑓 · 0𝑝)) = 𝐹)
3332eqeq1d 2612 . . . 4 (𝜑 → ((𝐹𝑓 − (𝐺𝑓 · 0𝑝)) = 0𝑝𝐹 = 0𝑝))
3432fveq2d 6107 . . . . . 6 (𝜑 → (deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) = (deg‘𝐹))
35 dgrcl 23793 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
3611, 35syl 17 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℕ0)
3736nn0red 11229 . . . . . . . . 9 (𝜑 → (deg‘𝐺) ∈ ℝ)
3837recnd 9947 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℂ)
3938addid2d 10116 . . . . . . 7 (𝜑 → (0 + (deg‘𝐺)) = (deg‘𝐺))
4039eqcomd 2616 . . . . . 6 (𝜑 → (deg‘𝐺) = (0 + (deg‘𝐺)))
4134, 40breq12d 4596 . . . . 5 (𝜑 → ((deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) < (deg‘𝐺) ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
42 dgrcl 23793 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
431, 42syl 17 . . . . . . 7 (𝜑 → (deg‘𝐹) ∈ ℕ0)
4443nn0red 11229 . . . . . 6 (𝜑 → (deg‘𝐹) ∈ ℝ)
45 0red 9920 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4644, 37, 45ltsubaddd 10502 . . . . 5 (𝜑 → (((deg‘𝐹) − (deg‘𝐺)) < 0 ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
4741, 46bitr4d 270 . . . 4 (𝜑 → ((deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) < (deg‘𝐺) ↔ ((deg‘𝐹) − (deg‘𝐺)) < 0))
4833, 47orbi12d 742 . . 3 (𝜑 → (((𝐹𝑓 − (𝐺𝑓 · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) < (deg‘𝐺)) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)))
495, 48mpbird 246 . 2 (𝜑 → ((𝐹𝑓 − (𝐺𝑓 · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) < (deg‘𝐺)))
50 plydiv.r . . . . . 6 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
51 oveq2 6557 . . . . . . 7 (𝑞 = 0𝑝 → (𝐺𝑓 · 𝑞) = (𝐺𝑓 · 0𝑝))
5251oveq2d 6565 . . . . . 6 (𝑞 = 0𝑝 → (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 0𝑝)))
5350, 52syl5eq 2656 . . . . 5 (𝑞 = 0𝑝𝑅 = (𝐹𝑓 − (𝐺𝑓 · 0𝑝)))
5453eqeq1d 2612 . . . 4 (𝑞 = 0𝑝 → (𝑅 = 0𝑝 ↔ (𝐹𝑓 − (𝐺𝑓 · 0𝑝)) = 0𝑝))
5553fveq2d 6107 . . . . 5 (𝑞 = 0𝑝 → (deg‘𝑅) = (deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))))
5655breq1d 4593 . . . 4 (𝑞 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) < (deg‘𝐺)))
5754, 56orbi12d 742 . . 3 (𝑞 = 0𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹𝑓 − (𝐺𝑓 · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) < (deg‘𝐺))))
5857rspcev 3282 . 2 ((0𝑝 ∈ (Poly‘𝑆) ∧ ((𝐹𝑓 − (𝐺𝑓 · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 0𝑝))) < (deg‘𝐺))) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
594, 49, 58syl2anc 691 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  0cn0 11169  0𝑝c0p 23242  Polycply 23744  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  plydivex  23856
  Copyright terms: Public domain W3C validator