MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyf Structured version   Unicode version

Theorem plyf 22358
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyf  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )

Proof of Theorem plyf
Dummy variables  k 
a  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 22355 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
21simprbi 464 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
3 fzfid 12051 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( 0 ... n
)  e.  Fin )
4 plybss 22354 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
5 0cnd 9589 . . . . . . . . . . . 12  |-  ( F  e.  (Poly `  S
)  ->  0  e.  CC )
65snssd 4172 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  { 0 }  C_  CC )
74, 6unssd 3680 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  ( S  u.  { 0 } ) 
C_  CC )
87ad2antrr 725 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( S  u.  {
0 } )  C_  CC )
98adantr 465 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( S  u.  { 0 } )  C_  CC )
10 simplrr 760 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
11 cnex 9573 . . . . . . . . . . . 12  |-  CC  e.  _V
12 ssexg 4593 . . . . . . . . . . . 12  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
138, 11, 12sylancl 662 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 10801 . . . . . . . . . . 11  |-  NN0  e.  _V
15 elmapg 7433 . . . . . . . . . . 11  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 662 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( a  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1710, 16mpbid 210 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  a : NN0 --> ( S  u.  { 0 } ) )
18 elfznn0 11770 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
19 ffvelrn 6019 . . . . . . . . 9  |-  ( ( a : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  (
a `  k )  e.  ( S  u.  {
0 } ) )
2017, 18, 19syl2an 477 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( a `  k )  e.  ( S  u.  { 0 } ) )
219, 20sseldd 3505 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( a `  k )  e.  CC )
22 simpr 461 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  z  e.  CC )
23 expcl 12152 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
2422, 18, 23syl2an 477 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( z ^
k )  e.  CC )
2521, 24mulcld 9616 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( ( a `
 k )  x.  ( z ^ k
) )  e.  CC )
263, 25fsumcl 13518 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  -> 
sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) )  e.  CC )
27 eqid 2467 . . . . 5  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )
2826, 27fmptd 6045 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) : CC --> CC )
29 feq1 5713 . . . 4  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  ->  ( F : CC --> CC  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) : CC --> CC ) )
3028, 29syl5ibrcom 222 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F : CC
--> CC ) )
3130rexlimdvva 2962 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F : CC
--> CC ) )
322, 31mpd 15 1  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   _Vcvv 3113    u. cun 3474    C_ wss 3476   {csn 4027    |-> cmpt 4505   -->wf 5584   ` cfv 5588  (class class class)co 6284    ^m cmap 7420   CCcc 9490   0cc0 9492    x. cmul 9497   NN0cn0 10795   ...cfz 11672   ^cexp 12134   sum_csu 13471  Polycply 22344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-sum 13472  df-ply 22348
This theorem is referenced by:  plysub  22379  plyco  22401  0dgrb  22406  coe0  22415  coesub  22416  dgrsub  22431  dgrcolem1  22432  dgrcolem2  22433  dgrco  22434  plymul0or  22439  plyreres  22441  dvply2g  22443  dvnply2  22445  plycpn  22447  plydivlem3  22453  plydivlem4  22454  plydiveu  22456  plyremlem  22462  plyrem  22463  facth  22464  fta1lem  22465  fta1  22466  quotcan  22467  vieta1lem1  22468  vieta1lem2  22469  vieta1  22470  plyexmo  22471  elaa  22474  elqaalem3  22479  aannenlem1  22486  aalioulem2  22491  aalioulem3  22492  aalioulem4  22493  taylthlem2  22531  ftalem2  23103  ftalem3  23104  ftalem4  23105  ftalem5  23106  ftalem7  23108  basellem4  23113  basellem5  23114  plymul02  28171  plymulx0  28172  signsplypnf  28175  signsply0  28176  mpaaeu  30732  rngunsnply  30755
  Copyright terms: Public domain W3C validator