MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyf Structured version   Unicode version

Theorem plyf 21798
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyf  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )

Proof of Theorem plyf
Dummy variables  k 
a  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 21795 . . 3  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
21simprbi 464 . 2  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
3 fzfid 11911 . . . . . 6  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( 0 ... n
)  e.  Fin )
4 plybss 21794 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
5 0cnd 9489 . . . . . . . . . . . 12  |-  ( F  e.  (Poly `  S
)  ->  0  e.  CC )
65snssd 4125 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  { 0 }  C_  CC )
74, 6unssd 3639 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  ( S  u.  { 0 } ) 
C_  CC )
87ad2antrr 725 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( S  u.  {
0 } )  C_  CC )
98adantr 465 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( S  u.  { 0 } )  C_  CC )
10 simplrr 760 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
11 cnex 9473 . . . . . . . . . . . 12  |-  CC  e.  _V
12 ssexg 4545 . . . . . . . . . . . 12  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
138, 11, 12sylancl 662 . . . . . . . . . . 11  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 10695 . . . . . . . . . . 11  |-  NN0  e.  _V
15 elmapg 7336 . . . . . . . . . . 11  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( a  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 662 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  ( a  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
1710, 16mpbid 210 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  a : NN0 --> ( S  u.  { 0 } ) )
18 elfznn0 11597 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
19 ffvelrn 5949 . . . . . . . . 9  |-  ( ( a : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  (
a `  k )  e.  ( S  u.  {
0 } ) )
2017, 18, 19syl2an 477 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( a `  k )  e.  ( S  u.  { 0 } ) )
219, 20sseldd 3464 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( a `  k )  e.  CC )
22 simpr 461 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  ->  z  e.  CC )
23 expcl 11999 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
2422, 18, 23syl2an 477 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( z ^
k )  e.  CC )
2521, 24mulcld 9516 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  S )  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  /\  k  e.  (
0 ... n ) )  ->  ( ( a `
 k )  x.  ( z ^ k
) )  e.  CC )
263, 25fsumcl 13327 . . . . 5  |-  ( ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  z  e.  CC )  -> 
sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) )  e.  CC )
27 eqid 2454 . . . . 5  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )
2826, 27fmptd 5975 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) : CC --> CC )
29 feq1 5649 . . . 4  |-  ( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  ->  ( F : CC --> CC  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) : CC --> CC ) )
3028, 29syl5ibrcom 222 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F : CC
--> CC ) )
3130rexlimdvva 2952 . 2  |-  ( F  e.  (Poly `  S
)  ->  ( E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  ->  F : CC
--> CC ) )
322, 31mpd 15 1  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   E.wrex 2799   _Vcvv 3076    u. cun 3433    C_ wss 3435   {csn 3984    |-> cmpt 4457   -->wf 5521   ` cfv 5525  (class class class)co 6199    ^m cmap 7323   CCcc 9390   0cc0 9392    x. cmul 9397   NN0cn0 10689   ...cfz 11553   ^cexp 11981   sum_csu 13280  Polycply 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-1o 7029  df-oadd 7033  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-sup 7801  df-oi 7834  df-card 8219  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-n0 10690  df-z 10757  df-uz 10972  df-rp 11102  df-fz 11554  df-fzo 11665  df-seq 11923  df-exp 11982  df-hash 12220  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-clim 13083  df-sum 13281  df-ply 21788
This theorem is referenced by:  plysub  21819  plyco  21841  0dgrb  21846  coe0  21855  coesub  21856  dgrsub  21871  dgrcolem1  21872  dgrcolem2  21873  dgrco  21874  plymul0or  21879  plyreres  21881  dvply2g  21883  dvnply2  21885  plycpn  21887  plydivlem3  21893  plydivlem4  21894  plydiveu  21896  plyremlem  21902  plyrem  21903  facth  21904  fta1lem  21905  fta1  21906  quotcan  21907  vieta1lem1  21908  vieta1lem2  21909  vieta1  21910  plyexmo  21911  elaa  21914  elqaalem3  21919  aannenlem1  21926  aalioulem2  21931  aalioulem3  21932  aalioulem4  21933  taylthlem2  21971  ftalem2  22543  ftalem3  22544  ftalem4  22545  ftalem5  22546  ftalem7  22548  basellem4  22553  basellem5  22554  plymul02  27090  plymulx0  27091  signsplypnf  27094  signsply0  27095  mpaaeu  29654  rngunsnply  29677
  Copyright terms: Public domain W3C validator