Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-2nd Structured version   Visualization version   GIF version

Definition df-2nd 7060
 Description: Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 7068 proves that it does this. For example, (2nd ‘⟨3, 4⟩) = 4. Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5538 and op2ndb 5537). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
df-2nd 2nd = (𝑥 ∈ V ↦ ran {𝑥})

Detailed syntax breakdown of Definition df-2nd
StepHypRef Expression
1 c2nd 7058 . 2 class 2nd
2 vx . . 3 setvar 𝑥
3 cvv 3173 . . 3 class V
42cv 1474 . . . . . 6 class 𝑥
54csn 4125 . . . . 5 class {𝑥}
65crn 5039 . . . 4 class ran {𝑥}
76cuni 4372 . . 3 class ran {𝑥}
82, 3, 7cmpt 4643 . 2 class (𝑥 ∈ V ↦ ran {𝑥})
91, 8wceq 1475 1 wff 2nd = (𝑥 ∈ V ↦ ran {𝑥})
 Colors of variables: wff setvar class This definition is referenced by:  2ndval  7062  fo2nd  7080  f2ndres  7082  hashf1rn  13004  hashf1rnOLD  13005
 Copyright terms: Public domain W3C validator