![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 4138. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 4125 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1474 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1475 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2596 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1475 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 4135 elsng 4139 rabeqsn 4161 rabsssn 4162 csbsng 4190 rabsn 4200 pw0 4283 iunid 4511 dfiota2 5769 uniabio 5778 dfimafn2 6156 fnsnfv 6168 suppvalbr 7186 snec 7697 infmap2 8923 cf0 8956 cflecard 8958 brdom7disj 9234 brdom6disj 9235 vdwlem6 15528 hashbc0 15547 symgbas0 17637 psrbagsn 19316 ptcmplem2 21667 snclseqg 21729 nmoo0 27030 nmop0 28229 nmfn0 28230 disjabrex 28777 disjabrexf 28778 pstmfval 29267 hasheuni 29474 derang0 30405 dfiota3 31200 bj-nuliotaALT 32211 poimirlem28 32607 lineset 34042 frege54cor1c 37229 iotain 37640 csbsngVD 38151 dfaimafn2 39895 rnfdmpr 40325 |
Copyright terms: Public domain | W3C validator |