![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabsn | Structured version Visualization version GIF version |
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
rabsn | ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2676 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | pm5.32ri 668 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵)) |
3 | 2 | baib 942 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
4 | 3 | abbidv 2728 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵)} = {𝑥 ∣ 𝑥 = 𝐵}) |
5 | df-rab 2905 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵)} | |
6 | df-sn 4126 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
7 | 4, 5, 6 | 3eqtr4g 2669 | 1 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 {crab 2900 {csn 4125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-rab 2905 df-sn 4126 |
This theorem is referenced by: unisn3 4389 sylow3lem6 17870 lineunray 31424 pmapat 34067 dia0 35359 nzss 37538 lco0 42010 |
Copyright terms: Public domain | W3C validator |