Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pw0 Structured version   Visualization version   GIF version

Theorem pw0 4283
 Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3925 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2726 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 4110 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 4126 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2642 1 𝒫 ∅ = {∅}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  {cab 2596   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126 This theorem is referenced by:  p0ex  4779  pwfi  8144  ackbij1lem14  8938  fin1a2lem12  9116  0tsk  9456  hashbc  13094  incexclem  14407  sn0topon  20612  sn0cld  20704  ust0  21833  uhgr0vb  25738  uhgr0  25739  uhgra0v  25839  usgra0v  25900  esumnul  29437  rankeq1o  31448  ssoninhaus  31617  sge00  39269
 Copyright terms: Public domain W3C validator