![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pw0 | Structured version Visualization version GIF version |
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pw0 | ⊢ 𝒫 ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3925 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
2 | 1 | abbii 2726 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
3 | df-pw 4110 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
4 | df-sn 4126 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
5 | 2, 3, 4 | 3eqtr4i 2642 | 1 ⊢ 𝒫 ∅ = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 {cab 2596 ⊆ wss 3540 ∅c0 3874 𝒫 cpw 4108 {csn 4125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-dif 3543 df-in 3547 df-ss 3554 df-nul 3875 df-pw 4110 df-sn 4126 |
This theorem is referenced by: p0ex 4779 pwfi 8144 ackbij1lem14 8938 fin1a2lem12 9116 0tsk 9456 hashbc 13094 incexclem 14407 sn0topon 20612 sn0cld 20704 ust0 21833 uhgr0vb 25738 uhgr0 25739 uhgra0v 25839 usgra0v 25900 esumnul 29437 rankeq1o 31448 ssoninhaus 31617 sge00 39269 |
Copyright terms: Public domain | W3C validator |