Step | Hyp | Ref
| Expression |
1 | | ptcmplem2.7 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
2 | | 0ss 3924 |
. . . . . . 7
⊢ ∅
⊆ 𝑈 |
3 | | 0fin 8073 |
. . . . . . 7
⊢ ∅
∈ Fin |
4 | | elfpw 8151 |
. . . . . . 7
⊢ (∅
∈ (𝒫 𝑈 ∩
Fin) ↔ (∅ ⊆ 𝑈 ∧ ∅ ∈ Fin)) |
5 | 2, 3, 4 | mpbir2an 957 |
. . . . . 6
⊢ ∅
∈ (𝒫 𝑈 ∩
Fin) |
6 | | unieq 4380 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∪ ∅) |
7 | | uni0 4401 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
8 | 6, 7 | syl6eq 2660 |
. . . . . . . 8
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∅) |
9 | 8 | eqeq2d 2620 |
. . . . . . 7
⊢ (𝑧 = ∅ → (𝑋 = ∪
𝑧 ↔ 𝑋 = ∅)) |
10 | 9 | rspcev 3282 |
. . . . . 6
⊢ ((∅
∈ (𝒫 𝑈 ∩
Fin) ∧ 𝑋 = ∅)
→ ∃𝑧 ∈
(𝒫 𝑈 ∩
Fin)𝑋 = ∪ 𝑧) |
11 | 5, 10 | mpan 702 |
. . . . 5
⊢ (𝑋 = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = ∪ 𝑧) |
12 | 11 | necon3bi 2808 |
. . . 4
⊢ (¬
∃𝑧 ∈ (𝒫
𝑈 ∩ Fin)𝑋 = ∪
𝑧 → 𝑋 ≠ ∅) |
13 | 1, 12 | syl 17 |
. . 3
⊢ (𝜑 → 𝑋 ≠ ∅) |
14 | | n0 3890 |
. . 3
⊢ (𝑋 ≠ ∅ ↔
∃𝑓 𝑓 ∈ 𝑋) |
15 | 13, 14 | sylib 207 |
. 2
⊢ (𝜑 → ∃𝑓 𝑓 ∈ 𝑋) |
16 | | ptcmp.2 |
. . . . . . 7
⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) |
17 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
18 | 17 | unieqd 4382 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑘)) |
19 | 18 | cbvixpv 7812 |
. . . . . . 7
⊢ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
20 | 16, 19 | eqtri 2632 |
. . . . . 6
⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
21 | | inss2 3796 |
. . . . . . . 8
⊢ (UFL
∩ dom card) ⊆ dom card |
22 | | ptcmp.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (UFL ∩ dom
card)) |
23 | 21, 22 | sseldi 3566 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ dom card) |
24 | 23 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑋 ∈ dom card) |
25 | 20, 24 | syl5eqelr 2693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ dom card) |
26 | | ssrab2 3650 |
. . . . . 6
⊢ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ⊆
𝐴 |
27 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑋 ≠ ∅) |
28 | 20, 27 | syl5eqner 2857 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ≠ ∅) |
29 | | eqid 2610 |
. . . . . . 7
⊢ (𝑔 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜})) = (𝑔 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈
1𝑜})) |
30 | 29 | resixpfo 7832 |
. . . . . 6
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ⊆
𝐴 ∧ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ≠ ∅) → (𝑔 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜})):X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)–onto→X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘)) |
31 | 26, 28, 30 | sylancr 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜})):X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)–onto→X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘)) |
32 | | fonum 8764 |
. . . . 5
⊢ ((X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ∈ dom card ∧ (𝑔 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↦ (𝑔 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜})):X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)–onto→X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘)) → X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ dom card) |
33 | 25, 31, 32 | syl2anc 691 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ dom card) |
34 | | vex 3176 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
35 | | difexg 4735 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ V → (𝑔 ∖ 𝑓) ∈ V) |
36 | 34, 35 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∖ 𝑓) ∈ V) |
37 | | dmexg 6989 |
. . . . . . . . . 10
⊢ ((𝑔 ∖ 𝑓) ∈ V → dom (𝑔 ∖ 𝑓) ∈ V) |
38 | | uniexg 6853 |
. . . . . . . . . 10
⊢ (dom
(𝑔 ∖ 𝑓) ∈ V → ∪ dom (𝑔 ∖ 𝑓) ∈ V) |
39 | 36, 37, 38 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪ dom
(𝑔 ∖ 𝑓) ∈ V) |
40 | 39 | ralrimivw 2950 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∀𝑔 ∈ 𝑋 ∪ dom (𝑔 ∖ 𝑓) ∈ V) |
41 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) = (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) |
42 | 41 | fnmpt 5933 |
. . . . . . . 8
⊢
(∀𝑔 ∈
𝑋 ∪ dom (𝑔 ∖ 𝑓) ∈ V → (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) Fn 𝑋) |
43 | 40, 42 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) Fn 𝑋) |
44 | | dffn4 6034 |
. . . . . . 7
⊢ ((𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) Fn 𝑋 ↔ (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)):𝑋–onto→ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) |
45 | 43, 44 | sylib 207 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)):𝑋–onto→ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) |
46 | | fonum 8764 |
. . . . . 6
⊢ ((𝑋 ∈ dom card ∧ (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)):𝑋–onto→ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) → ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ∈ dom
card) |
47 | 24, 45, 46 | syl2anc 691 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ∈ dom
card) |
48 | | ssdif0 3896 |
. . . . . . . . . . . 12
⊢ (∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)} ↔ (∪
(𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅) |
49 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → ∪
(𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) |
50 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ 𝑋) |
51 | 50, 20 | syl6eleq 2698 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
52 | | vex 3176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑓 ∈ V |
53 | 52 | elixp 7801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘))) |
54 | 53 | simprbi 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) → ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
55 | 51, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
56 | 55 | r19.21bi 2916 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (𝑓‘𝑘) ∈ ∪ (𝐹‘𝑘)) |
57 | 56 | snssd 4281 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → {(𝑓‘𝑘)} ⊆ ∪
(𝐹‘𝑘)) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → {(𝑓‘𝑘)} ⊆ ∪
(𝐹‘𝑘)) |
59 | 49, 58 | eqssd 3585 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → ∪
(𝐹‘𝑘) = {(𝑓‘𝑘)}) |
60 | | fvex 6113 |
. . . . . . . . . . . . . . 15
⊢ (𝑓‘𝑘) ∈ V |
61 | 60 | ensn1 7906 |
. . . . . . . . . . . . . 14
⊢ {(𝑓‘𝑘)} ≈
1𝑜 |
62 | 59, 61 | syl6eqbr 4622 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ ∪ (𝐹‘𝑘) ⊆ {(𝑓‘𝑘)}) → ∪
(𝐹‘𝑘) ≈
1𝑜) |
63 | 62 | ex 449 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (∪
(𝐹‘𝑘) ⊆ {(𝑓‘𝑘)} → ∪ (𝐹‘𝑘) ≈
1𝑜)) |
64 | 48, 63 | syl5bir 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → ((∪
(𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅ → ∪ (𝐹‘𝑘) ≈
1𝑜)) |
65 | 64 | con3d 147 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (¬ ∪
(𝐹‘𝑘) ≈ 1𝑜 → ¬
(∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅)) |
66 | | neq0 3889 |
. . . . . . . . . 10
⊢ (¬
(∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) = ∅ ↔ ∃𝑥 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) |
67 | 65, 66 | syl6ib 240 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (¬ ∪
(𝐹‘𝑘) ≈ 1𝑜 →
∃𝑥 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}))) |
68 | | eldifi 3694 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → 𝑥 ∈ ∪ (𝐹‘𝑘)) |
69 | | simplr 788 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → 𝑥 ∈ ∪ (𝐹‘𝑘)) |
70 | | iftrue 4042 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) = 𝑥) |
71 | 70, 18 | eleq12d 2682 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛) ↔ 𝑥 ∈ ∪ (𝐹‘𝑘))) |
72 | 69, 71 | syl5ibrcom 236 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → (𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
73 | 50, 16 | syl6eleq 2698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛)) |
74 | 52 | elixp 7801 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛))) |
75 | 74 | simprbi 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
76 | 73, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
77 | 76 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → ∀𝑛 ∈ 𝐴 (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
78 | 77 | r19.21bi 2916 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛)) |
79 | | iffalse 4045 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) = (𝑓‘𝑛)) |
80 | 79 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑛 = 𝑘 → (if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛) ↔ (𝑓‘𝑛) ∈ ∪ (𝐹‘𝑛))) |
81 | 78, 80 | syl5ibrcom 236 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → (¬ 𝑛 = 𝑘 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
82 | 72, 81 | pm2.61d 169 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) ∧ 𝑛 ∈ 𝐴) → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛)) |
83 | 82 | ralrimiva 2949 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → ∀𝑛 ∈ 𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛)) |
84 | | ptcmp.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
85 | 84 | ad3antrrr 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → 𝐴 ∈ 𝑉) |
86 | | mptelixpg 7831 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↔ ∀𝑛 ∈ 𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ ∪ (𝐹‘𝑛))) |
88 | 83, 87 | mpbird 246 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛)) |
89 | 88, 16 | syl6eleqr 2699 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ ∪ (𝐹‘𝑘)) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ 𝑋) |
90 | 68, 89 | sylan2 490 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ 𝑋) |
91 | | vex 3176 |
. . . . . . . . . . . . . 14
⊢ 𝑘 ∈ V |
92 | 91 | unisn 4387 |
. . . . . . . . . . . . 13
⊢ ∪ {𝑘}
= 𝑘 |
93 | | simplr 788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → 𝑘 ∈ 𝐴) |
94 | | eleq1 2676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑘 → (𝑚 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
95 | 93, 94 | syl5ibrcom 236 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑚 = 𝑘 → 𝑚 ∈ 𝐴)) |
96 | 95 | pm4.71rd 665 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚 ∈ 𝐴 ∧ 𝑚 = 𝑘))) |
97 | | equequ1 1939 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝑛 = 𝑘 ↔ 𝑚 = 𝑘)) |
98 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) |
99 | 97, 98 | ifbieq2d 4061 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) = if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚))) |
100 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) |
101 | | vex 3176 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑥 ∈ V |
102 | | fvex 6113 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓‘𝑚) ∈ V |
103 | 101, 102 | ifex 4106 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ∈ V |
104 | 99, 100, 103 | fvmpt 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ 𝐴 → ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) = if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚))) |
105 | 104 | neeq1d 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ 𝐴 → (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚))) |
106 | 105 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚) ↔ if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚))) |
107 | | iffalse 4045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) = (𝑓‘𝑚)) |
108 | 107 | necon1ai 2809 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚) → 𝑚 = 𝑘) |
109 | | eldifsni 4261 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → 𝑥 ≠ (𝑓‘𝑘)) |
110 | 109 | ad2antlr 759 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → 𝑥 ≠ (𝑓‘𝑘)) |
111 | | iftrue 4042 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) = 𝑥) |
112 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → (𝑓‘𝑚) = (𝑓‘𝑘)) |
113 | 111, 112 | neeq12d 2843 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑘 → (if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚) ↔ 𝑥 ≠ (𝑓‘𝑘))) |
114 | 110, 113 | syl5ibrcom 236 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (𝑚 = 𝑘 → if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚))) |
115 | 108, 114 | impbid2 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (if(𝑚 = 𝑘, 𝑥, (𝑓‘𝑚)) ≠ (𝑓‘𝑚) ↔ 𝑚 = 𝑘)) |
116 | 106, 115 | bitrd 267 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) ∧ 𝑚 ∈ 𝐴) → (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚) ↔ 𝑚 = 𝑘)) |
117 | 116 | pm5.32da 671 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → ((𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)) ↔ (𝑚 ∈ 𝐴 ∧ 𝑚 = 𝑘))) |
118 | 96, 117 | bitr4d 270 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑚 = 𝑘 ↔ (𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)))) |
119 | 118 | abbidv 2728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → {𝑚 ∣ 𝑚 = 𝑘} = {𝑚 ∣ (𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚))}) |
120 | | df-sn 4126 |
. . . . . . . . . . . . . . . 16
⊢ {𝑘} = {𝑚 ∣ 𝑚 = 𝑘} |
121 | | df-rab 2905 |
. . . . . . . . . . . . . . . 16
⊢ {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)} = {𝑚 ∣ (𝑚 ∈ 𝐴 ∧ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚))} |
122 | 119, 120,
121 | 3eqtr4g 2669 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → {𝑘} = {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)}) |
123 | | fvex 6113 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓‘𝑛) ∈ V |
124 | 101, 123 | ifex 4106 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ V |
125 | 124 | rgenw 2908 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑛 ∈
𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ V |
126 | 100 | fnmpt 5933 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑛 ∈
𝐴 if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)) ∈ V → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) Fn 𝐴) |
127 | 125, 126 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) Fn 𝐴) |
128 | | ixpfn 7800 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ X𝑛 ∈
𝐴 ∪ (𝐹‘𝑛) → 𝑓 Fn 𝐴) |
129 | 73, 128 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 Fn 𝐴) |
130 | 129 | ad2antrr 758 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → 𝑓 Fn 𝐴) |
131 | | fndmdif 6229 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) Fn 𝐴 ∧ 𝑓 Fn 𝐴) → dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓) = {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)}) |
132 | 127, 130,
131 | syl2anc 691 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓) = {𝑚 ∈ 𝐴 ∣ ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛)))‘𝑚) ≠ (𝑓‘𝑚)}) |
133 | 122, 132 | eqtr4d 2647 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → {𝑘} = dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
134 | 133 | unieqd 4382 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → ∪
{𝑘} = ∪ dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
135 | 92, 134 | syl5eqr 2658 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → 𝑘 = ∪ dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
136 | | difeq1 3683 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) → (𝑔 ∖ 𝑓) = ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
137 | 136 | dmeqd 5248 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) → dom (𝑔 ∖ 𝑓) = dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
138 | 137 | unieqd 4382 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) → ∪ dom
(𝑔 ∖ 𝑓) = ∪
dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) |
139 | 138 | eqeq2d 2620 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) → (𝑘 = ∪ dom (𝑔 ∖ 𝑓) ↔ 𝑘 = ∪ dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓))) |
140 | 139 | rspcev 3282 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∈ 𝑋 ∧ 𝑘 = ∪ dom ((𝑛 ∈ 𝐴 ↦ if(𝑛 = 𝑘, 𝑥, (𝑓‘𝑛))) ∖ 𝑓)) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓)) |
141 | 90, 135, 140 | syl2anc 691 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)})) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓)) |
142 | 141 | ex 449 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
143 | 142 | exlimdv 1848 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (∃𝑥 𝑥 ∈ (∪ (𝐹‘𝑘) ∖ {(𝑓‘𝑘)}) → ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
144 | 67, 143 | syld 46 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑋) ∧ 𝑘 ∈ 𝐴) → (¬ ∪
(𝐹‘𝑘) ≈ 1𝑜 →
∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
145 | 144 | expimpd 627 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ((𝑘 ∈ 𝐴 ∧ ¬ ∪
(𝐹‘𝑘) ≈ 1𝑜) →
∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
146 | 18 | breq1d 4593 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∪ (𝐹‘𝑛) ≈ 1𝑜 ↔ ∪ (𝐹‘𝑘) ≈
1𝑜)) |
147 | 146 | notbid 307 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (¬ ∪
(𝐹‘𝑛) ≈ 1𝑜 ↔ ¬
∪ (𝐹‘𝑘) ≈
1𝑜)) |
148 | 147 | elrab 3331 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ↔
(𝑘 ∈ 𝐴 ∧ ¬ ∪
(𝐹‘𝑘) ≈
1𝑜)) |
149 | 41 | elrnmpt 5293 |
. . . . . . . 8
⊢ (𝑘 ∈ V → (𝑘 ∈ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ↔ ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓))) |
150 | 91, 149 | ax-mp 5 |
. . . . . . 7
⊢ (𝑘 ∈ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ↔ ∃𝑔 ∈ 𝑋 𝑘 = ∪ dom (𝑔 ∖ 𝑓)) |
151 | 145, 148,
150 | 3imtr4g 284 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} → 𝑘 ∈ ran (𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)))) |
152 | 151 | ssrdv 3574 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ⊆ ran
(𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) |
153 | | ssnum 8745 |
. . . . 5
⊢ ((ran
(𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓)) ∈ dom card ∧ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ⊆ ran
(𝑔 ∈ 𝑋 ↦ ∪ dom
(𝑔 ∖ 𝑓))) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ∈ dom
card) |
154 | 47, 152, 153 | syl2anc 691 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ∈ dom
card) |
155 | | xpnum 8660 |
. . . 4
⊢ ((X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ dom card ∧ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ∈ dom
card) → (X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}) ∈ dom
card) |
156 | 33, 154, 155 | syl2anc 691 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}) ∈ dom
card) |
157 | 84 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝐴 ∈ 𝑉) |
158 | | rabexg 4739 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ∈
V) |
159 | 157, 158 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ∈
V) |
160 | | fvex 6113 |
. . . . . . 7
⊢ (𝐹‘𝑘) ∈ V |
161 | 160 | uniex 6851 |
. . . . . 6
⊢ ∪ (𝐹‘𝑘) ∈ V |
162 | 161 | rgenw 2908 |
. . . . 5
⊢
∀𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ V |
163 | | iunexg 7035 |
. . . . 5
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ∈ V
∧ ∀𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ V) → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ V) |
164 | 159, 162,
163 | sylancl 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ V) |
165 | | resixp 7829 |
. . . . . 6
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ⊆
𝐴 ∧ 𝑓 ∈ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) → (𝑓 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}) ∈
X𝑘
∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪ (𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘)) |
166 | 26, 51, 165 | sylancr 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑓 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}) ∈
X𝑘
∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪ (𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘)) |
167 | | ne0i 3880 |
. . . . 5
⊢ ((𝑓 ↾ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}) ∈
X𝑘
∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪ (𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) → X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ≠ ∅) |
168 | 166, 167 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → X𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ≠ ∅) |
169 | | ixpiunwdom 8379 |
. . . 4
⊢ (({𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜} ∈ V
∧ ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ V ∧ X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ≠ ∅) → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ≼* (X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈
1𝑜})) |
170 | 159, 164,
168, 169 | syl3anc 1318 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ≼* (X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈
1𝑜})) |
171 | | numwdom 8765 |
. . 3
⊢ (((X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}) ∈ dom
card ∧ ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ≼* (X𝑘 ∈
{𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) × {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜})) →
∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ dom card) |
172 | 156, 170,
171 | syl2anc 691 |
. 2
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ∪
𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ dom card) |
173 | 15, 172 | exlimddv 1850 |
1
⊢ (𝜑 → ∪ 𝑘 ∈ {𝑛 ∈ 𝐴 ∣ ¬ ∪
(𝐹‘𝑛) ≈ 1𝑜}∪ (𝐹‘𝑘) ∈ dom card) |