![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotain | Structured version Visualization version GIF version |
Description: Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 15-Jul-2011.) |
Ref | Expression |
---|---|
iotain | ⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2462 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | vex 3176 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | intsn 4448 | . . . 4 ⊢ ∩ {𝑦} = 𝑦 |
4 | nfa1 2015 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
5 | sp 2041 | . . . . . . 7 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (𝜑 ↔ 𝑥 = 𝑦)) | |
6 | 4, 5 | abbid 2727 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) |
7 | df-sn 4126 | . . . . . 6 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
8 | 6, 7 | syl6eqr 2662 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
9 | 8 | inteqd 4415 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑦}) |
10 | iotaval 5779 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
11 | 3, 9, 10 | 3eqtr4a 2670 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
12 | 11 | exlimiv 1845 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
13 | 1, 12 | sylbi 206 | 1 ⊢ (∃!𝑥𝜑 → ∩ {𝑥 ∣ 𝜑} = (℩𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 ∃wex 1695 ∃!weu 2458 {cab 2596 {csn 4125 ∩ cint 4410 ℩cio 5766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 df-sbc 3403 df-un 3545 df-in 3547 df-sn 4126 df-pr 4128 df-uni 4373 df-int 4411 df-iota 5768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |