Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intsn Structured version   Visualization version   GIF version

Theorem intsn 4448
 Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1 𝐴 ∈ V
Assertion
Ref Expression
intsn {𝐴} = 𝐴

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2 𝐴 ∈ V
2 intsng 4447 . 2 (𝐴 ∈ V → {𝐴} = 𝐴)
31, 2ax-mp 5 1 {𝐴} = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  Vcvv 3173  {csn 4125  ∩ cint 4410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-un 3545  df-in 3547  df-sn 4126  df-pr 4128  df-int 4411 This theorem is referenced by:  uniintsn  4449  intunsn  4451  op1stb  4867  op2ndb  5537  ssfii  8208  cf0  8956  cflecard  8958  uffix  21535  iotain  37640
 Copyright terms: Public domain W3C validator