Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-11 Structured version   Visualization version   GIF version

Axiom ax-11 2021
 Description: Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax11w 1994) but is used as an auxiliary axiom scheme to achieve metalogical completeness. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
ax-11 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Detailed syntax breakdown of Axiom ax-11
StepHypRef Expression
1 wph . . . 4 wff 𝜑
2 vy . . . 4 setvar 𝑦
31, 2wal 1473 . . 3 wff 𝑦𝜑
4 vx . . 3 setvar 𝑥
53, 4wal 1473 . 2 wff 𝑥𝑦𝜑
61, 4wal 1473 . . 3 wff 𝑥𝜑
76, 2wal 1473 . 2 wff 𝑦𝑥𝜑
85, 7wi 4 1 wff (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 Colors of variables: wff setvar class This axiom is referenced by:  alcoms  2022  hbal  2023  alcom  2024  hbald  2028  nfald  2151  hbae  2303  hbaltg  30957  bj-hbalt  31858  hbae-o  33206  axc711  33217  axc5c711  33221  ax12indalem  33248  ax12inda2ALT  33249  pm11.71  37619  axc5c4c711  37624  axc11next  37629  hbalg  37792  hbalgVD  38163  hbexgVD  38164
 Copyright terms: Public domain W3C validator