Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfaimafn2 Structured version   Visualization version   GIF version

Theorem dfaimafn2 39895
Description: Alternate definition of the image of a function as an indexed union of singletons of function values, analogous to dfimafn2 6156. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfaimafn2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹'''𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfaimafn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfaimafn 39894 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦})
2 iunab 4502 . . 3 𝑥𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 (𝐹'''𝑥) = 𝑦}
31, 2syl6eqr 2662 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦})
4 df-sn 4126 . . . . 5 {(𝐹'''𝑥)} = {𝑦𝑦 = (𝐹'''𝑥)}
5 eqcom 2617 . . . . . 6 (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦)
65abbii 2726 . . . . 5 {𝑦𝑦 = (𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}
74, 6eqtri 2632 . . . 4 {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦}
87a1i 11 . . 3 (𝑥𝐴 → {(𝐹'''𝑥)} = {𝑦 ∣ (𝐹'''𝑥) = 𝑦})
98iuneq2i 4475 . 2 𝑥𝐴 {(𝐹'''𝑥)} = 𝑥𝐴 {𝑦 ∣ (𝐹'''𝑥) = 𝑦}
103, 9syl6eqr 2662 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹'''𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  wss 3540  {csn 4125   ciun 4455  dom cdm 5038  cima 5041  Fun wfun 5798  '''cafv 39843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-dfat 39845  df-afv 39846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator