Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pstmfval Structured version   Visualization version   GIF version

Theorem pstmfval 29267
Description: Function value of the metric induced by a pseudometric 𝐷 (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
pstmval.1 = (~Met𝐷)
Assertion
Ref Expression
pstmfval ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (pstoMet‘𝐷)[𝐵] ) = (𝐴𝐷𝐵))

Proof of Theorem pstmfval
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pstmval.1 . . . . 5 = (~Met𝐷)
21pstmval 29266 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}))
323ad2ant1 1075 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (pstoMet‘𝐷) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}))
43oveqd 6566 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (pstoMet‘𝐷)[𝐵] ) = ([𝐴] (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})[𝐵] ))
5 fvex 6113 . . . . . 6 (~Met𝐷) ∈ V
61, 5eqeltri 2684 . . . . 5 ∈ V
76ecelqsi 7690 . . . 4 (𝐴𝑋 → [𝐴] ∈ (𝑋 / ))
873ad2ant2 1076 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → [𝐴] ∈ (𝑋 / ))
96ecelqsi 7690 . . . 4 (𝐵𝑋 → [𝐵] ∈ (𝑋 / ))
1093ad2ant3 1077 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → [𝐵] ∈ (𝑋 / ))
11 rexeq 3116 . . . . . 6 (𝑥 = [𝐴] → (∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)))
1211abbidv 2728 . . . . 5 (𝑥 = [𝐴] → {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
1312unieqd 4382 . . . 4 (𝑥 = [𝐴] {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
14 rexeq 3116 . . . . . . 7 (𝑦 = [𝐵] → (∃𝑏𝑦 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)))
1514rexbidv 3034 . . . . . 6 (𝑦 = [𝐵] → (∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)))
1615abbidv 2728 . . . . 5 (𝑦 = [𝐵] → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
1716unieqd 4382 . . . 4 (𝑦 = [𝐵] {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏𝑦 𝑧 = (𝑎𝐷𝑏)} = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
18 eqid 2610 . . . 4 (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)}) = (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})
19 ecexg 7633 . . . . . . 7 ( ∈ V → [𝐴] ∈ V)
206, 19ax-mp 5 . . . . . 6 [𝐴] ∈ V
21 ecexg 7633 . . . . . . 7 ( ∈ V → [𝐵] ∈ V)
226, 21ax-mp 5 . . . . . 6 [𝐵] ∈ V
2320, 22ab2rexex 7050 . . . . 5 {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} ∈ V
2423uniex 6851 . . . 4 {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} ∈ V
2513, 17, 18, 24ovmpt2 6694 . . 3 (([𝐴] ∈ (𝑋 / ) ∧ [𝐵] ∈ (𝑋 / )) → ([𝐴] (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})[𝐵] ) = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
268, 10, 25syl2anc 691 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (𝑥 ∈ (𝑋 / ), 𝑦 ∈ (𝑋 / ) ↦ {𝑧 ∣ ∃𝑎𝑥𝑏𝑦 𝑧 = (𝑎𝐷𝑏)})[𝐵] ) = {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)})
27 simpr3 1062 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑧 = (𝑒𝐷𝑓))
28 simpl1 1057 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐷 ∈ (PsMet‘𝑋))
29 simpr1 1060 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑒 ∈ [𝐴] )
30 metidss 29262 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
311, 30syl5eqss 3612 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (PsMet‘𝑋) → ⊆ (𝑋 × 𝑋))
32 xpss 5149 . . . . . . . . . . . . . . . . . . 19 (𝑋 × 𝑋) ⊆ (V × V)
3331, 32syl6ss 3580 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (PsMet‘𝑋) → ⊆ (V × V))
34 df-rel 5045 . . . . . . . . . . . . . . . . . 18 (Rel ⊆ (V × V))
3533, 34sylibr 223 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (PsMet‘𝑋) → Rel )
36353ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → Rel )
3736adantr 480 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → Rel )
38 relelec 7674 . . . . . . . . . . . . . . 15 (Rel → (𝑒 ∈ [𝐴] 𝐴 𝑒))
3937, 38syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → (𝑒 ∈ [𝐴] 𝐴 𝑒))
4029, 39mpbid 221 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐴 𝑒)
411breqi 4589 . . . . . . . . . . . . 13 (𝐴 𝑒𝐴(~Met𝐷)𝑒)
4240, 41sylib 207 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐴(~Met𝐷)𝑒)
43 simpr2 1061 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑓 ∈ [𝐵] )
44 relelec 7674 . . . . . . . . . . . . . . 15 (Rel → (𝑓 ∈ [𝐵] 𝐵 𝑓))
4537, 44syl 17 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → (𝑓 ∈ [𝐵] 𝐵 𝑓))
4643, 45mpbid 221 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐵 𝑓)
471breqi 4589 . . . . . . . . . . . . 13 (𝐵 𝑓𝐵(~Met𝐷)𝑓)
4846, 47sylib 207 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝐵(~Met𝐷)𝑓)
49 metideq 29264 . . . . . . . . . . . 12 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met𝐷)𝑒𝐵(~Met𝐷)𝑓)) → (𝐴𝐷𝐵) = (𝑒𝐷𝑓))
5028, 42, 48, 49syl12anc 1316 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → (𝐴𝐷𝐵) = (𝑒𝐷𝑓))
5127, 50eqtr4d 2647 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑧 = (𝐴𝐷𝐵))
5251adantlr 747 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) ∧ (𝑒 ∈ [𝐴] 𝑓 ∈ [𝐵] 𝑧 = (𝑒𝐷𝑓))) → 𝑧 = (𝐴𝐷𝐵))
53523anassrs 1282 . . . . . . . 8 ((((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) ∧ 𝑒 ∈ [𝐴] ) ∧ 𝑓 ∈ [𝐵] ) ∧ 𝑧 = (𝑒𝐷𝑓)) → 𝑧 = (𝐴𝐷𝐵))
54 oveq1 6556 . . . . . . . . . . . 12 (𝑎 = 𝑒 → (𝑎𝐷𝑏) = (𝑒𝐷𝑏))
5554eqeq2d 2620 . . . . . . . . . . 11 (𝑎 = 𝑒 → (𝑧 = (𝑎𝐷𝑏) ↔ 𝑧 = (𝑒𝐷𝑏)))
56 oveq2 6557 . . . . . . . . . . . 12 (𝑏 = 𝑓 → (𝑒𝐷𝑏) = (𝑒𝐷𝑓))
5756eqeq2d 2620 . . . . . . . . . . 11 (𝑏 = 𝑓 → (𝑧 = (𝑒𝐷𝑏) ↔ 𝑧 = (𝑒𝐷𝑓)))
5855, 57cbvrex2v 3156 . . . . . . . . . 10 (∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏) ↔ ∃𝑒 ∈ [ 𝐴] 𝑓 ∈ [ 𝐵] 𝑧 = (𝑒𝐷𝑓))
5958biimpi 205 . . . . . . . . 9 (∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏) → ∃𝑒 ∈ [ 𝐴] 𝑓 ∈ [ 𝐵] 𝑧 = (𝑒𝐷𝑓))
6059adantl 481 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) → ∃𝑒 ∈ [ 𝐴] 𝑓 ∈ [ 𝐵] 𝑧 = (𝑒𝐷𝑓))
6153, 60r19.29vva 3062 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)) → 𝑧 = (𝐴𝐷𝐵))
62 simpl1 1057 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐷 ∈ (PsMet‘𝑋))
63 simpl2 1058 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐴𝑋)
64 psmet0 21923 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
6562, 63, 64syl2anc 691 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴𝐷𝐴) = 0)
66 relelec 7674 . . . . . . . . . . 11 (Rel → (𝐴 ∈ [𝐴] 𝐴 𝐴))
6762, 35, 663syl 18 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
681a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → = (~Met𝐷))
6968breqd 4594 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴 𝐴𝐴(~Met𝐷)𝐴))
70 metidv 29263 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐴𝑋)) → (𝐴(~Met𝐷)𝐴 ↔ (𝐴𝐷𝐴) = 0))
7162, 63, 63, 70syl12anc 1316 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴(~Met𝐷)𝐴 ↔ (𝐴𝐷𝐴) = 0))
7267, 69, 713bitrd 293 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐴 ∈ [𝐴] ↔ (𝐴𝐷𝐴) = 0))
7365, 72mpbird 246 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐴 ∈ [𝐴] )
74 simpl3 1059 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐵𝑋)
75 psmet0 21923 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
7662, 74, 75syl2anc 691 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵𝐷𝐵) = 0)
77 relelec 7674 . . . . . . . . . . 11 (Rel → (𝐵 ∈ [𝐵] 𝐵 𝐵))
7862, 35, 773syl 18 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵 ∈ [𝐵] 𝐵 𝐵))
7968breqd 4594 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵 𝐵𝐵(~Met𝐷)𝐵))
80 metidv 29263 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐵𝑋)) → (𝐵(~Met𝐷)𝐵 ↔ (𝐵𝐷𝐵) = 0))
8162, 74, 74, 80syl12anc 1316 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵(~Met𝐷)𝐵 ↔ (𝐵𝐷𝐵) = 0))
8278, 79, 813bitrd 293 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → (𝐵 ∈ [𝐵] ↔ (𝐵𝐷𝐵) = 0))
8376, 82mpbird 246 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝐵 ∈ [𝐵] )
84 simpr 476 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → 𝑧 = (𝐴𝐷𝐵))
85 rspceov 6590 . . . . . . . 8 ((𝐴 ∈ [𝐴] 𝐵 ∈ [𝐵] 𝑧 = (𝐴𝐷𝐵)) → ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏))
8673, 83, 84, 85syl3anc 1318 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑧 = (𝐴𝐷𝐵)) → ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏))
8761, 86impbida 873 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏) ↔ 𝑧 = (𝐴𝐷𝐵)))
8887abbidv 2728 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = {𝑧𝑧 = (𝐴𝐷𝐵)})
89 df-sn 4126 . . . . 5 {(𝐴𝐷𝐵)} = {𝑧𝑧 = (𝐴𝐷𝐵)}
9088, 89syl6eqr 2662 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = {(𝐴𝐷𝐵)})
9190unieqd 4382 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = {(𝐴𝐷𝐵)})
92 ovex 6577 . . . 4 (𝐴𝐷𝐵) ∈ V
9392unisn 4387 . . 3 {(𝐴𝐷𝐵)} = (𝐴𝐷𝐵)
9491, 93syl6eq 2660 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → {𝑧 ∣ ∃𝑎 ∈ [ 𝐴] 𝑏 ∈ [ 𝐵] 𝑧 = (𝑎𝐷𝑏)} = (𝐴𝐷𝐵))
954, 26, 943eqtrd 2648 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ([𝐴] (pstoMet‘𝐷)[𝐵] ) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  Vcvv 3173  wss 3540  {csn 4125   cuni 4372   class class class wbr 4583   × cxp 5036  Rel wrel 5043  cfv 5804  (class class class)co 6549  cmpt2 6551  [cec 7627   / cqs 7628  0cc0 9815  PsMetcpsmet 19551  ~Metcmetid 29257  pstoMetcpstm 29258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-xadd 11823  df-psmet 19559  df-metid 29259  df-pstm 29260
This theorem is referenced by:  pstmxmet  29268
  Copyright terms: Public domain W3C validator