![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagsn | Structured version Visualization version GIF version |
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
psrbag0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbagsn | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 11185 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
2 | 0nn0 11184 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | keepel 4105 | . . . . . 6 ⊢ if(𝑥 = 𝐾, 1, 0) ∈ ℕ0 |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0) |
5 | eqid 2610 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) | |
6 | 4, 5 | fmptd 6292 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0) |
7 | 6 | trud 1484 | . . 3 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 |
8 | 5 | mptpreima 5545 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} |
9 | snfi 7923 | . . . . . 6 ⊢ {𝐾} ∈ Fin | |
10 | inss1 3795 | . . . . . . 7 ⊢ ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥 ∣ 𝑥 = 𝐾} | |
11 | dfrab2 3862 | . . . . . . 7 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} = ({𝑥 ∣ 𝑥 = 𝐾} ∩ 𝐼) | |
12 | df-sn 4126 | . . . . . . 7 ⊢ {𝐾} = {𝑥 ∣ 𝑥 = 𝐾} | |
13 | 10, 11, 12 | 3sstr4i 3607 | . . . . . 6 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾} |
14 | ssfi 8065 | . . . . . 6 ⊢ (({𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin) | |
15 | 9, 13, 14 | mp2an 704 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin |
16 | 0nnn 10929 | . . . . . . . . 9 ⊢ ¬ 0 ∈ ℕ | |
17 | iffalse 4045 | . . . . . . . . . 10 ⊢ (¬ 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0) | |
18 | 17 | eleq1d 2672 | . . . . . . . . 9 ⊢ (¬ 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ)) |
19 | 16, 18 | mtbiri 316 | . . . . . . . 8 ⊢ (¬ 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ) |
20 | 19 | con4i 112 | . . . . . . 7 ⊢ (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾) |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)) |
22 | 21 | ss2rabi 3647 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} |
23 | ssfi 8065 | . . . . 5 ⊢ (({𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾} ∈ Fin ∧ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥 ∈ 𝐼 ∣ 𝑥 = 𝐾}) → {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin) | |
24 | 15, 22, 23 | mp2an 704 | . . . 4 ⊢ {𝑥 ∈ 𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin |
25 | 8, 24 | eqeltri 2684 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin |
26 | 7, 25 | pm3.2i 470 | . 2 ⊢ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin) |
27 | psrbag0.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
28 | 27 | psrbag 19185 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin))) |
29 | 26, 28 | mpbiri 247 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ⊤wtru 1476 ∈ wcel 1977 {cab 2596 {crab 2900 ∩ cin 3539 ⊆ wss 3540 ifcif 4036 {csn 4125 ↦ cmpt 4643 ◡ccnv 5037 “ cima 5041 ⟶wf 5800 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 0cc0 9815 1c1 9816 ℕcn 10897 ℕ0cn0 11169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 |
This theorem is referenced by: evlslem1 19336 |
Copyright terms: Public domain | W3C validator |