Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dom Structured version   Visualization version   GIF version

Definition df-dom 7843
 Description: Define the dominance relation. For an alternate definition see dfdom2 7867. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 7853 and domen 7854. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-dom ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
Distinct variable group:   𝑥,𝑦,𝑓

Detailed syntax breakdown of Definition df-dom
StepHypRef Expression
1 cdom 7839 . 2 class
2 vx . . . . . 6 setvar 𝑥
32cv 1474 . . . . 5 class 𝑥
4 vy . . . . . 6 setvar 𝑦
54cv 1474 . . . . 5 class 𝑦
6 vf . . . . . 6 setvar 𝑓
76cv 1474 . . . . 5 class 𝑓
83, 5, 7wf1 5801 . . . 4 wff 𝑓:𝑥1-1𝑦
98, 6wex 1695 . . 3 wff 𝑓 𝑓:𝑥1-1𝑦
109, 2, 4copab 4642 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
111, 10wceq 1475 1 wff ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
 Colors of variables: wff setvar class This definition is referenced by:  reldom  7847  brdomg  7851  enssdom  7866
 Copyright terms: Public domain W3C validator