![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-1rid | Structured version Visualization version GIF version |
Description: 1 is an identity element for real multiplication. Axiom 14 of 22 for real and complex numbers, justified by theorem ax1rid 9861. Weakened from the original axiom in the form of statement in mulid1 9916, based on ideas by Eric Schmidt. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-1rid | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cr 9814 | . . 3 class ℝ | |
3 | 1, 2 | wcel 1977 | . 2 wff 𝐴 ∈ ℝ |
4 | c1 9816 | . . . 4 class 1 | |
5 | cmul 9820 | . . . 4 class · | |
6 | 1, 4, 5 | co 6549 | . . 3 class (𝐴 · 1) |
7 | 6, 1 | wceq 1475 | . 2 wff (𝐴 · 1) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulid1 9916 mulgt1 10761 ltmulgt11 10762 lemulge11 10764 addltmul 11145 xmulid1 11981 2submod 12593 cshw1 13419 bezoutlem1 15094 cshwshashnsame 15648 frghash2spot 26590 usgreghash2spotv 26593 numclwwlk6 26640 nmopub2tALT 28152 nmfnleub2 28169 unitdivcld 29275 zrhre 29391 sgnmulrp2 29932 knoppcnlem4 31656 relexpmulnn 37020 frgrhash2wsp 41497 fusgreghash2wspv 41499 av-numclwwlk6 41544 relogbmulbexp 42153 |
Copyright terms: Public domain | W3C validator |