Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitdivcld Structured version   Visualization version   GIF version

Theorem unitdivcld 29275
Description: Necessary conditions for a quotient to be in the closed unit. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
unitdivcld ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))

Proof of Theorem unitdivcld
StepHypRef Expression
1 elunitrn 29271 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 𝐴 ∈ ℝ)
213ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ)
3 elunitrn 29271 . . . . . . . 8 (𝐵 ∈ (0[,]1) → 𝐵 ∈ ℝ)
433ad2ant2 1076 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
5 simp3 1056 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
62, 4, 5redivcld 10732 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
76adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ∈ ℝ)
8 elunitge0 29273 . . . . . . . 8 (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴)
983ad2ant1 1075 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐴)
10 elunitge0 29273 . . . . . . . . . 10 (𝐵 ∈ (0[,]1) → 0 ≤ 𝐵)
1110adantr 480 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ 𝐵)
12 0re 9919 . . . . . . . . . . . . 13 0 ∈ ℝ
13 ltlen 10017 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1412, 3, 13sylancr 694 . . . . . . . . . . . 12 (𝐵 ∈ (0[,]1) → (0 < 𝐵 ↔ (0 ≤ 𝐵𝐵 ≠ 0)))
1514biimpar 501 . . . . . . . . . . 11 ((𝐵 ∈ (0[,]1) ∧ (0 ≤ 𝐵𝐵 ≠ 0)) → 0 < 𝐵)
16153impb 1252 . . . . . . . . . 10 ((𝐵 ∈ (0[,]1) ∧ 0 ≤ 𝐵𝐵 ≠ 0) → 0 < 𝐵)
17163com23 1263 . . . . . . . . 9 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0 ∧ 0 ≤ 𝐵) → 0 < 𝐵)
1811, 17mpd3an3 1417 . . . . . . . 8 ((𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
19183adant1 1072 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 < 𝐵)
20 divge0 10771 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
212, 9, 4, 19, 20syl22anc 1319 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 0 ≤ (𝐴 / 𝐵))
2221adantr 480 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → 0 ≤ (𝐴 / 𝐵))
23 1red 9934 . . . . . . . 8 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → 1 ∈ ℝ)
24 ledivmul 10778 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
252, 23, 4, 19, 24syl112anc 1322 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴 ≤ (𝐵 · 1)))
26 ax-1rid 9885 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
2726breq2d 4595 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
284, 27syl 17 . . . . . . 7 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ (𝐵 · 1) ↔ 𝐴𝐵))
2925, 28bitr2d 268 . . . . . 6 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ≤ 1))
3029biimpa 500 . . . . 5 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → (𝐴 / 𝐵) ≤ 1)
317, 22, 303jca 1235 . . . 4 (((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) ∧ 𝐴𝐵) → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3231ex 449 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 → ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
33 simp3 1056 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → (𝐴 / 𝐵) ≤ 1)
3433, 29syl5ibr 235 . . 3 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1) → 𝐴𝐵))
3532, 34impbid 201 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1)))
36 1re 9918 . . 3 1 ∈ ℝ
3712, 36elicc2i 12110 . 2 ((𝐴 / 𝐵) ∈ (0[,]1) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵) ∧ (𝐴 / 𝐵) ≤ 1))
3835, 37syl6bbr 277 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-icc 12053
This theorem is referenced by:  cndprob01  29824
  Copyright terms: Public domain W3C validator