Step | Hyp | Ref
| Expression |
1 | | 2nn 11062 |
. . . . . 6
⊢ 2 ∈
ℕ |
2 | | frgrhash2wsp.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
3 | 2 | wspniunwspnon 41130 |
. . . . . 6
⊢ ((2
∈ ℕ ∧ 𝐺
∈ FriendGraph ) → (2 WSPathsN 𝐺) = ∪
𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
4 | 1, 3 | mpan 702 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph → (2
WSPathsN 𝐺) = ∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
5 | 4 | fveq2d 6107 |
. . . 4
⊢ (𝐺 ∈ FriendGraph →
(#‘(2 WSPathsN 𝐺)) =
(#‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
6 | 5 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) →
(#‘(2 WSPathsN 𝐺)) =
(#‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
7 | | simprl 790 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin) |
8 | | diffi 8077 |
. . . . . . 7
⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑎}) ∈ Fin) |
9 | 8 | ad2antrl 760 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝑉 ∖ {𝑎}) ∈ Fin) |
10 | 9 | adantr 480 |
. . . . 5
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → (𝑉 ∖ {𝑎}) ∈ Fin) |
11 | 2 | eleq1i 2679 |
. . . . . . . . 9
⊢ (𝑉 ∈ Fin ↔
(Vtx‘𝐺) ∈
Fin) |
12 | | wspthnonfi 41129 |
. . . . . . . . 9
⊢
((Vtx‘𝐺)
∈ Fin → (𝑎(2
WSPathsNOn 𝐺)𝑏) ∈ Fin) |
13 | 11, 12 | sylbi 206 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
14 | 13 | ad2antrl 760 |
. . . . . . 7
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
16 | 15 | ralrimivw 2950 |
. . . . 5
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → ∀𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
17 | | iunfi 8137 |
. . . . 5
⊢ (((𝑉 ∖ {𝑎}) ∈ Fin ∧ ∀𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) → ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
18 | 10, 16, 17 | syl2anc 691 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → ∪
𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
19 | 2 | 2wspiundisj 41166 |
. . . . 5
⊢
Disj 𝑎 ∈
𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏) |
20 | 19 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) →
Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
21 | 7, 18, 20 | hashiun 14395 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) →
(#‘∪ 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = Σ𝑎 ∈ 𝑉 (#‘∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
22 | 15 | adantr 480 |
. . . . . . 7
⊢ ((((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎(2 WSPathsNOn 𝐺)𝑏) ∈ Fin) |
23 | 2 | 2wspdisj 41165 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
24 | 23 | adantlr 747 |
. . . . . . 7
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → Disj 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) |
25 | 10, 22, 24 | hashiun 14395 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → (#‘∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = Σ𝑏 ∈ (𝑉 ∖ {𝑎})(#‘(𝑎(2 WSPathsNOn 𝐺)𝑏))) |
26 | | simplll 794 |
. . . . . . . 8
⊢ ((((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ FriendGraph ) |
27 | | simpr 476 |
. . . . . . . . 9
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) |
28 | | eldifi 3694 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ∈ 𝑉) |
29 | 27, 28 | anim12i 588 |
. . . . . . . 8
⊢ ((((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
30 | | eldifsni 4261 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ≠ 𝑎) |
31 | 30 | necomd 2837 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎 ≠ 𝑏) |
32 | 31 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝑎 ≠ 𝑏) |
33 | 2 | frgr2wsp1 41495 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏) → (#‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
34 | 26, 29, 32, 33 | syl3anc 1318 |
. . . . . . 7
⊢ ((((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (#‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = 1) |
35 | 34 | sumeq2dv 14281 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → Σ𝑏 ∈ (𝑉 ∖ {𝑎})(#‘(𝑎(2 WSPathsNOn 𝐺)𝑏)) = Σ𝑏 ∈ (𝑉 ∖ {𝑎})1) |
36 | | ax-1cn 9873 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
37 | 8, 36 | jctir 559 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ Fin → ((𝑉 ∖ {𝑎}) ∈ Fin ∧ 1 ∈
ℂ)) |
38 | 37 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝑉 ∖ {𝑎}) ∈ Fin ∧ 1 ∈
ℂ)) |
39 | 38 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑎 ∈ 𝑉) → ((𝑉 ∖ {𝑎}) ∈ Fin ∧ 1 ∈
ℂ)) |
40 | | fsumconst 14364 |
. . . . . . . . 9
⊢ (((𝑉 ∖ {𝑎}) ∈ Fin ∧ 1 ∈ ℂ) →
Σ𝑏 ∈ (𝑉 ∖ {𝑎})1 = ((#‘(𝑉 ∖ {𝑎})) · 1)) |
41 | 39, 40 | syl 17 |
. . . . . . . 8
⊢ (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑎 ∈ 𝑉) → Σ𝑏 ∈ (𝑉 ∖ {𝑎})1 = ((#‘(𝑉 ∖ {𝑎})) · 1)) |
42 | | hashdifsn 13063 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑎 ∈ 𝑉) → (#‘(𝑉 ∖ {𝑎})) = ((#‘𝑉) − 1)) |
43 | 42 | adantlr 747 |
. . . . . . . . 9
⊢ (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑎 ∈ 𝑉) → (#‘(𝑉 ∖ {𝑎})) = ((#‘𝑉) − 1)) |
44 | 43 | oveq1d 6564 |
. . . . . . . 8
⊢ (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑎 ∈ 𝑉) → ((#‘(𝑉 ∖ {𝑎})) · 1) = (((#‘𝑉) − 1) ·
1)) |
45 | | hashnncl 13018 |
. . . . . . . . . . . . 13
⊢ (𝑉 ∈ Fin →
((#‘𝑉) ∈ ℕ
↔ 𝑉 ≠
∅)) |
46 | 45 | biimpar 501 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) →
(#‘𝑉) ∈
ℕ) |
47 | | nnm1nn0 11211 |
. . . . . . . . . . . 12
⊢
((#‘𝑉) ∈
ℕ → ((#‘𝑉)
− 1) ∈ ℕ0) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) →
((#‘𝑉) − 1)
∈ ℕ0) |
49 | 48 | nn0red 11229 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) →
((#‘𝑉) − 1)
∈ ℝ) |
50 | | ax-1rid 9885 |
. . . . . . . . . 10
⊢
(((#‘𝑉)
− 1) ∈ ℝ → (((#‘𝑉) − 1) · 1) = ((#‘𝑉) − 1)) |
51 | 49, 50 | syl 17 |
. . . . . . . . 9
⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) →
(((#‘𝑉) − 1)
· 1) = ((#‘𝑉)
− 1)) |
52 | 51 | adantr 480 |
. . . . . . . 8
⊢ (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑎 ∈ 𝑉) → (((#‘𝑉) − 1) · 1) = ((#‘𝑉) − 1)) |
53 | 41, 44, 52 | 3eqtrd 2648 |
. . . . . . 7
⊢ (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑎 ∈ 𝑉) → Σ𝑏 ∈ (𝑉 ∖ {𝑎})1 = ((#‘𝑉) − 1)) |
54 | 53 | adantll 746 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → Σ𝑏 ∈ (𝑉 ∖ {𝑎})1 = ((#‘𝑉) − 1)) |
55 | 25, 35, 54 | 3eqtrd 2648 |
. . . . 5
⊢ (((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ 𝑎 ∈ 𝑉) → (#‘∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((#‘𝑉) − 1)) |
56 | 55 | sumeq2dv 14281 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) →
Σ𝑎 ∈ 𝑉 (#‘∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = Σ𝑎 ∈ 𝑉 ((#‘𝑉) − 1)) |
57 | | hashcl 13009 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin →
(#‘𝑉) ∈
ℕ0) |
58 | 57 | nn0cnd 11230 |
. . . . . . 7
⊢ (𝑉 ∈ Fin →
(#‘𝑉) ∈
ℂ) |
59 | | 1cnd 9935 |
. . . . . . 7
⊢ (𝑉 ∈ Fin → 1 ∈
ℂ) |
60 | 58, 59 | subcld 10271 |
. . . . . 6
⊢ (𝑉 ∈ Fin →
((#‘𝑉) − 1)
∈ ℂ) |
61 | | fsumconst 14364 |
. . . . . 6
⊢ ((𝑉 ∈ Fin ∧
((#‘𝑉) − 1)
∈ ℂ) → Σ𝑎 ∈ 𝑉 ((#‘𝑉) − 1) = ((#‘𝑉) · ((#‘𝑉) − 1))) |
62 | 60, 61 | mpdan 699 |
. . . . 5
⊢ (𝑉 ∈ Fin → Σ𝑎 ∈ 𝑉 ((#‘𝑉) − 1) = ((#‘𝑉) · ((#‘𝑉) − 1))) |
63 | 62 | ad2antrl 760 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) →
Σ𝑎 ∈ 𝑉 ((#‘𝑉) − 1) = ((#‘𝑉) · ((#‘𝑉) − 1))) |
64 | 56, 63 | eqtrd 2644 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) →
Σ𝑎 ∈ 𝑉 (#‘∪ 𝑏 ∈ (𝑉 ∖ {𝑎})(𝑎(2 WSPathsNOn 𝐺)𝑏)) = ((#‘𝑉) · ((#‘𝑉) − 1))) |
65 | 6, 21, 64 | 3eqtrd 2648 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) →
(#‘(2 WSPathsN 𝐺)) =
((#‘𝑉) ·
((#‘𝑉) −
1))) |
66 | 65 | 3impb 1252 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) →
(#‘(2 WSPathsN 𝐺)) =
((#‘𝑉) ·
((#‘𝑉) −
1))) |