HomeHome Metamath Proof Explorer
Theorem List (p. 415 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 41401-41500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeupth2lem3lem6 41401* Formerly part of proof of eupath2lem3 26506: If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than (𝑃‘0) and (𝑃𝑁): if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝑁 ∈ (0..^(#‘𝐹)))    &   (𝜑𝑈𝑉)    &   (𝜑𝐹(TrailS‘𝐺)𝑃)    &   (𝜑 → (Vtx‘𝑋) = 𝑉)    &   (𝜑 → (Vtx‘𝑌) = 𝑉)    &   (𝜑 → (Vtx‘𝑍) = 𝑉)    &   (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))    &   (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})    &   (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))    &   (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))    &   (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})       ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
 
Theoremeupth2lem3lem7 41402* Lemma for eupath2lem3 26506: Combining trlsegvdeg 41395, eupth2lem3lem3 41398, eupth2lem3lem4 41399 and eupth2lem3lem6 41401. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 27-Feb-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝑁 ∈ (0..^(#‘𝐹)))    &   (𝜑𝑈𝑉)    &   (𝜑𝐹(TrailS‘𝐺)𝑃)    &   (𝜑 → (Vtx‘𝑋) = 𝑉)    &   (𝜑 → (Vtx‘𝑌) = 𝑉)    &   (𝜑 → (Vtx‘𝑍) = 𝑉)    &   (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))    &   (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})    &   (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))    &   (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))    &   (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})       (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑍)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
 
Theoremeupthvdres 41403 Formerly part of proof of eupth2 41407: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐺𝑊)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)    &   𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))⟩       (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺))
 
Theoremeupth2lem3 41404* Lemma for eupath2 26507. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐺 ∈ UPGraph )    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)    &   𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩    &   𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → (𝑁 + 1) ≤ (#‘𝐹))    &   (𝜑𝑈𝑉)    &   (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))       (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
 
Theoremeupth2lemb 41405* Lemma for eupth2 41407 (induction basis): There are no vertices of odd degree in an Eulerian path of length 0, having no edge and identical endpoints (the single vertex of the Eulerian path). Formerly part of proof for eupth2 41407. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐺 ∈ UPGraph )    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)       (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^0)))⟩)‘𝑥)} = ∅)
 
Theoremeupth2lems 41406* Lemma for eupth2 41407 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 41407. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐺 ∈ UPGraph )    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)       ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (#‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
 
Theoremeupth2 41407* The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐺 ∈ UPGraph )    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)       (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} = if((𝑃‘0) = (𝑃‘(#‘𝐹)), ∅, {(𝑃‘0), (𝑃‘(#‘𝐹))}))
 
Theoremeulerpathpr 41408* A graph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
 
Theoremeulerpath 41409* A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
 
Theoremeulercrct 41410* A pseudograph with an Eulerian circuit 𝐹, 𝑃 (an "Eulerian pseudograph") has only vertices of even degree. (Contributed by AV, 12-Mar-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃𝐹(CircuitS‘𝐺)𝑃) → ∀𝑥𝑉 2 ∥ ((VtxDeg‘𝐺)‘𝑥))
 
Theoremeucrctshift 41411* Cyclically shifting the indices of an Eulerian circuit 𝐹, 𝑃 results in an Eulerian circuit 𝐻, 𝑄. (Contributed by AV, 15-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(CircuitS‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝑆 ∈ (0..^𝑁))    &   𝐻 = (𝐹 cyclShift 𝑆)    &   𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)       (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(CircuitS‘𝐺)𝑄))
 
Theoremeucrct2eupth1 41412 Removing one edge (𝐼‘(𝐹𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. This is the special case of eucrct2eupth 41413 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)    &   (𝜑𝐹(CircuitS‘𝐺)𝑃)    &   (Vtx‘𝑆) = 𝑉    &   (𝜑 → 0 < (#‘𝐹))    &   (𝜑𝑁 = ((#‘𝐹) − 1))    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))    &   𝐻 = (𝐹 ↾ (0..^𝑁))    &   𝑄 = (𝑃 ↾ (0...𝑁))       (𝜑𝐻(EulerPaths‘𝑆)𝑄)
 
Theoremeucrct2eupth 41413* Removing one edge (𝐼‘(𝐹𝐽)) from a graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. (Contributed by AV, 17-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(EulerPaths‘𝐺)𝑃)    &   (𝜑𝐹(CircuitS‘𝐺)𝑃)    &   (Vtx‘𝑆) = 𝑉    &   (𝜑𝑁 = (#‘𝐹))    &   (𝜑𝐽 ∈ (0..^𝑁))    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))    &   𝐾 = (𝐽 + 1)    &   𝐻 = ((𝐹 cyclShift 𝐾) ↾ (0..^(𝑁 − 1)))    &   𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))       (𝜑𝐻(EulerPaths‘𝑆)𝑄)
 
21.34.8.22  The Königsberg Bridge problem

According to Wikipedia ("Seven Bridges of Königsberg", 9-Mar-2021, https://en.wikipedia.org/wiki/Seven_Bridges_of_Koenigsberg): "The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured the idea of topology. The city of Königsberg in [East] Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large islands - Kneiphof and Lomse - which were connected to each other, or to the two mainland portions of the city, by seven bridges. The problem was to devise a walk through the city that would cross each of those bridges once and only once.". Euler proved that the problem has no solution by applying Euler's theorem to the Königsberg graph, which is obtained by replacing each land mass with an abstract "vertex" or node, and each bridge with an abstract connection, an "edge", which connects two land masses/vertices. The Königsberg graph 𝐺 is a multigraph consisting of 4 vertices and 7 edges, represented by the following ordered pair: 𝐺 = ⟨(0...3), ⟨“{0, 1}{0, 2}{0, 3}{1, 2}{1, 2} {2, 3}{2, 3}”⟩⟩, see konigsbergumgr 41420. konigsberg-av 41427 shows that the Königsberg graph has no Eulerian path, thus the Königsberg Bridge problem has no solution.

 
Theoremkonigsbergvtx 41414 The set of vertices of the Königsberg graph 𝐺. (Contributed by AV, 28-Feb-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       (Vtx‘𝐺) = (0...3)
 
Theoremkonigsbergiedg 41415 The indexed edges of the Königsberg graph 𝐺. (Contributed by AV, 28-Feb-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       (iEdg‘𝐺) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
 
Theoremkonigsbergiedgw 41416* The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}
 
TheoremkonigsbergiedgwOLD 41417* The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) Obsolete version of konigsbergiedgw 41416 as of 9-Mar-2021. (New usage is discouraged.) (Proof modification is discouraged.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       𝐸 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
 
Theoremkonigsbergssiedgwpr 41418* Each subset of the indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
 
Theoremkonigsbergssiedgw 41419* Each subset of the indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
 
Theoremkonigsbergumgr 41420 The Königsberg graph 𝐺 is a multigraph. (Contributed by AV, 28-Feb-2021.) (Revised by AV, 9-Mar-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       𝐺 ∈ UMGraph
 
TheoremkonigsbergupgrOLD 41421 The Königsberg graph 𝐺 is a pseudograph. (Contributed by AV, 28-Feb-2021.) Obsolete version of konigsbergumgr 41420 as of 9-Mar-2021. (New usage is discouraged.) (Proof modification is discouraged.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       𝐺 ∈ UPGraph
 
Theoremkonigsberglem1 41422 Lemma 1 for konigsberg-av 41427: Vertex 0 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       ((VtxDeg‘𝐺)‘0) = 3
 
Theoremkonigsberglem2 41423 Lemma 2 for konigsberg-av 41427: Vertex 1 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       ((VtxDeg‘𝐺)‘1) = 3
 
Theoremkonigsberglem3 41424 Lemma 3 for konigsberg-av 41427: Vertex 3 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       ((VtxDeg‘𝐺)‘3) = 3
 
Theoremkonigsberglem4 41425* Lemma 4 for konigsberg-av 41427: Vertices 0, 1, 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
 
Theoremkonigsberglem5 41426* Lemma 5 for konigsberg-av 41427: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
 
Theoremkonigsberg-av 41427 The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eupath 26508 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.)
𝑉 = (0...3)    &   𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩    &   𝐺 = ⟨𝑉, 𝐸       (EulerPaths‘𝐺) = ∅
 
21.34.8.23  Friendship graphs - basics
 
Syntaxcfrgr 41428 Extend class notation with friendship graphs.
class FriendGraph
 
Definitiondf-frgr 41429* Define the class of all friendship graphs: a simple graph is called a friendship graph if every pair of its vertices has exactly one common neighbor. This condition is called the friendship condition , see definition in [MertziosUnger] p. 152. (Contributed by Alexander van der Vekens and Mario Carneiro, 2-Oct-2017.) (Revised by AV, 29-Mar-2021.)
FriendGraph = {𝑔 ∣ (𝑔 ∈ USGraph ∧ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒)}
 
Theoremisfrgr 41430* The property of being a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺𝑈 → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
 
Theoremfrgrusgrfrcond 41431* A friendship graph is a simple graph which fulfils the friendship condition. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
 
Theoremfrgrusgr 41432 A friendship graph is a simple graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
(𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
 
Theoremfrgr0v 41433 Any null graph (set with no vertices) is a friendship graph iff its edge function is empty. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ FriendGraph ↔ (iEdg‘𝐺) = ∅))
 
Theoremfrgr0vb 41434 Any null graph (without vertices and edges) is a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Revised by AV, 29-Mar-2021.)
((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ FriendGraph )
 
Theoremfrgruhgr0v 41435 Any null graph (without vertices) represented as hypergraph is a friendship graph. (Contributed by AV, 29-Mar-2021.)
((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ FriendGraph )
 
Theoremfrgr0 41436 The null graph (graph without vertices) is a friendship graph. (Contributed by AV, 29-Mar-2021.)
∅ ∈ FriendGraph
 
Theoremrspc2vd 41437* Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.)
(𝑥 = 𝐴 → (𝜃𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜓))    &   (𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐸)    &   (𝜑𝐵𝐸)       (𝜑 → (∀𝑥𝐶𝑦𝐷 𝜃𝜓))
 
Theoremfrcond1 41438* The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 {{𝐴, 𝑏}, {𝑏, 𝐶}} ⊆ 𝐸))
 
Theoremfrcond2 41439* The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
 
Theoremfrcond3 41440* The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhoods of two different vertices have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃𝑥𝑉 ((𝐺 NeighbVtx 𝑘) ∩ (𝐺 NeighbVtx 𝑙)) = {𝑥})
 
21.34.8.24  The friendship theorem for small graphs
 
Theoremfrgr1v 41441 Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph )
 
Theoremnfrgr2v 41442 Any graph with two (different) vertices is not a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Proof shortened by Alexander van der Vekens, 13-Sep-2018.) (Revised by AV, 29-Mar-2021.)
(((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
 
Theoremfrgr3vlem1 41443* Lemma 1 for frgra3v 26529. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ∀𝑥𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ 𝐸)) → 𝑥 = 𝑦))
 
Theoremfrgr3vlem2 41444* Lemma 2 for frgra3v 26529. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → (∃!𝑥 ∈ {𝐴, 𝐵, 𝐶} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
 
Theoremfrgr3v 41445 Any graph with three vertices which are completely connected with each other is a friendship graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 29-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))))
 
Theorem1vwmgr 41446* Every graph with one vertex (which may be connect with itself by (multiple) loops!) is a windmill graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 31-Mar-2021.)
((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
 
Theorem3vfriswmgrlem 41447* Lemma for 3vfriswmgra 26532. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
 
Theorem3vfriswmgr 41448* Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
 
Theorem1to2vfriswmgr 41449* Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
 
Theorem1to3vfriswmgr 41450* Every friendship graph with one, two or three vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
 
Theorem1to3vfriendship-av 41451* The friendship theorem for small graphs: In every friendship graph with one, two or three vertices, there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵} ∨ 𝑉 = {𝐴, 𝐵, 𝐶})) → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
 
21.34.8.25  Theorems according to Mertzios and Unger
 
Theorem2pthfrgrrn 41452* Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 15-Nov-2017.) (Revised by AV, 1-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸))
 
Theorem2pthfrgrrn2 41453* Between any two (different) vertices in a friendship graph is a 2-path (path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 1-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑐 ∈ (𝑉 ∖ {𝑎})∃𝑏𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐)))
 
Theorem2pthfrgr 41454* Between any two (different) vertices in a friendship graph, tere is a 2-path (simple path of length 2), see Proposition 1(b) of [MertziosUnger] p. 153 : "A friendship graph G ..., as well as the distance between any two nodes in G is at most two". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.)
𝑉 = (Vtx‘𝐺)       (𝐺 ∈ FriendGraph → ∀𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑓𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (#‘𝑓) = 2))
 
Theorem3cyclfrgrrn1 41455* Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐶𝑉) ∧ 𝐴𝐶) → ∃𝑏𝑉𝑐𝑉 ({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝐴} ∈ 𝐸))
 
Theorem3cyclfrgrrn 41456* Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017.) (Revised by AV, 2-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
 
Theorem3cyclfrgrrn2 41457* Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 2-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑎𝑉𝑏𝑉𝑐𝑉 (𝑏𝑐 ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
 
Theorem3cyclfrgr 41458* Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑣𝑉𝑓𝑝(𝑓(CycleS‘𝐺)𝑝 ∧ (#‘𝑓) = 3 ∧ (𝑝‘0) = 𝑣))
 
Theorem4cycl2v2nb-av 41459 In a (maybe degenerated) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸))
 
Theorem4cycl2vnunb-av 41460* In a 4-cycle, two distinct vertices have not a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
 
Theoremn4cyclfrgr 41461 There is no 4-cycle in a friendship graph, see Proposition 1(a) of [MertziosUnger] p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
((𝐺 ∈ FriendGraph ∧ 𝐹(CycleS‘𝐺)𝑃) → (#‘𝐹) ≠ 4)
 
Theorem4cyclusnfrgr 41462 A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))
 
Theoremfrgrnbnb 41463 If two neighbors 𝑈 and 𝑊 of a vertex 𝑋 have a common neighbor 𝐴 in a friendship graph, then this common neighbor 𝐴 must be the vertex 𝑋. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.)
𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)       ((𝐺 ∈ FriendGraph ∧ (𝑈𝐷𝑊𝐷) ∧ 𝑈𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))
 
Theoremfrgrconngr 41464 A friendship graph is connected, see remark 1 in [MertziosUnger] p. 153 (after Proposition 1): "An arbitrary friendship graph has to be connected, ... ". (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 1-Apr-2021.)
(𝐺 ∈ FriendGraph → 𝐺 ∈ ConnGraph)
 
Theoremvdgn0frgrv2 41465 A vertex in a friendship graph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (#‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0))
 
Theoremvdgn1frgrv2 41466 Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 4-Apr-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (#‘𝑉) → ((VtxDeg‘𝐺)‘𝑁) ≠ 1))
 
Theoremvdgn1frgrv3 41467* Any vertex in a friendship graph does not have degree 1, see remark 2 in [MertziosUnger] p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 4-Sep-2018.) (Revised by AV, 4-Apr-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
 
Theoremvdgfrgrgt2 41468 Any vertex in a friendship graph (with more than one vertex - then, actually, the graph must have at least three vertices, because otherwise, it would not be a friendship graph) has at least degree 2, see remark 3 in [MertziosUnger] p. 153 (after Proposition 1): "It follows that deg(v) >= 2 for every node v of a friendship graph". (Contributed by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 5-Apr-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 𝑁𝑉) → (1 < (#‘𝑉) → 2 ≤ ((VtxDeg‘𝐺)‘𝑁)))
 
21.34.8.26  Huneke's Proof of the Friendship Theorem

In this section, the friendship theorem friendship 26649 is proven by formalizing Huneke's proof, see [Huneke] pp. 1-2. The three claims (see frgrncvvdeq 41480, frgrregorufr 41490 and frgregordn0 26597) and additional statements (numbered in the order of their occurence in the paper) in Huneke's proof are cited in the corresponding theorems.

 
Theoremfrgrncvvdeqlem1 41469 Lemma 1 for frgrncvvdeq 41480. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 8-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       ((𝜑𝑥𝐷) → 𝑌 ∈ (𝑉 ∖ {𝑥}))
 
Theoremfrgrncvvdeqlem2 41470 Lemma 2 for frgrncvvdeq 41480. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       (𝜑𝑋𝑁)
 
Theoremfrgrncvvdeqlem3 41471* Lemma 3 for frgrncvvdeq 41480. In a friendship graph, for each neighbor of a vertex there is exacly one neighbor of another vertex so that there is an edge between these two neighbors. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
 
Theoremfrgrncvvdeqlem4 41472* Lemma 4 for frgrncvvdeq 41480. The restricted iota of a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
 
Theoremfrgrncvvdeqlem5 41473* Lemma 5 for frgrncvvdeq 41480. The mapping of neighbors to neighbors is a function. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       (𝜑𝐴:𝐷𝑁)
 
Theoremfrgrncvvdeqlem6 41474* Lemma 6 for frgrncvvdeq 41480. The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
 
Theoremfrgrncvvdeqlem7 41475* Lemma 7 for frgrncvvdeq 41480. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸)
 
TheoremfrgrncvvdeqlemA 41476* Lemma A for frgrncvvdeq 41480. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       (𝜑 → ∀𝑥𝐷 (𝐴𝑥) ≠ 𝑋)
 
TheoremfrgrncvvdeqlemB 41477* Lemma B for frgrncvvdeq 41480. This corresponds to statement 2 in [Huneke] p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       (𝜑𝐴:𝐷1-1→ran 𝐴)
 
TheoremfrgrncvvdeqlemC 41478* Lemma C for frgrncvvdeq 41480. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       (𝜑𝐴:𝐷onto𝑁)
 
Theoremfrgrncvvdeqlem8 41479* Lemma 8 for frgrncvvdeq 41480. (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (𝐺 NeighbVtx 𝑋)    &   𝑁 = (𝐺 NeighbVtx 𝑌)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑋𝑌)    &   (𝜑𝑌𝐷)    &   (𝜑𝐺 ∈ FriendGraph )    &   𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))       (𝜑𝐴:𝐷1-1-onto𝑁)
 
Theoremfrgrncvvdeq 41480* In a friendship graph, two vertices which are not connected by an edge have the same degree. This corresponds to claim 1 in [Huneke] p. 1: "If x,y are elements of (the friendship graph) G and are not adjacent, then they have the same degree (i.e., the same number of adjacent vertices).". (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)       (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
 
Theoremfrgrwopreglem1 41481* Lemma 1 for frgrwopreg 41486: the classes A and B are sets. The definition of A and B corresponds to definition 3 in [Huneke] p. 2: "Let A be the set of all vertices of degree k, let B be the set of all vertices of degree different from k, ..." (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)       (𝐴 ∈ V ∧ 𝐵 ∈ V)
 
Theoremfrgrwopreglem2 41482* Lemma 2 for frgrwopreg 41486. In a friendship graph with at least two vertices, the degree of a vertex must be at least 2. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)       ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉) ∧ 𝐴 ≠ ∅) → 1 < 𝐾)
 
Theoremfrgrwopreglem3 41483* Lemma 3 for frgrwopreg 41486. The vertices in the sets A and B have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)       ((𝑋𝐴𝑌𝐵) → (𝐷𝑋) ≠ (𝐷𝑌))
 
Theoremfrgrwopreglem4 41484* Lemma 4 for frgrwopreg 41486. In a friendship graph each vertex with degree K is connected with a vertex with degree other than K. This corresponds to statement 4 in [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → ∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸)
 
Theoremfrgrwopreglem5 41485* Lemma 5 for frgrwopreg 41486. If A as well as B contain at least two vertices in a friendship graph, there is a 4-cycle in the graph. This corresponds to statement 6 in [Huneke] p. 2: "... otherwise, there are two different vertices in A, and they have two common neighbors in B, ...". (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝐴) ∧ 1 < (#‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑏𝑦𝑎𝑥) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑥, 𝑏} ∈ 𝐸) ∧ ({𝑎, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))
 
Theoremfrgrwopreg 41486* In a friendship graph there are either no vertices or exactly one vertex having degree K, or all or all except one vertices have degree K. TODO-AV: proof can be shortened by using bj-mp2d 31702 after it is moved to main set.mm. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 10-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → (((#‘𝐴) = 1 ∨ 𝐴 = ∅) ∨ ((#‘𝐵) = 1 ∨ 𝐵 = ∅)))
 
Theoremfrgrwopreg1 41487* According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ FriendGraph ∧ (#‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
 
Theoremfrgrwopreg2 41488* According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)    &   𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}    &   𝐵 = (𝑉𝐴)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ FriendGraph ∧ (#‘𝐵) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
 
Theoremfrgrregorufr0 41489* In a friendship graph there are either no vertices having degree 𝐾, or all vertices have degree 𝐾 for any (nonnegative integer) 𝐾, unless there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "... all vertices have degree k, unless there is a universal friend." (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 11-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)       (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
 
Theoremfrgrregorufr 41490* If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)    &   𝐷 = (VtxDeg‘𝐺)       (𝐺 ∈ FriendGraph → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
 
Theoremfrgreu 41491* Any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐸 = (Edg‘𝐺)       (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑏({𝐴, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝐶} ∈ 𝐸)))
 
Theoremfrgr2wwlkeu 41492* For two different vertices in a friendship graph, there is exactly one third vertex being the middle vertex of a (simple) path/walk of length 2 between the two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑐𝑉 ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
 
Theoremfrgr2wwlkn0 41493 In a friendship graph, there is always a path/walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅)
 
Theoremfrgr2wwlk1 41494 In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Revised by AV, 13-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (#‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)
 
Theoremfrgr2wsp1 41495 In a friendship graph, there is exactly one simple path of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 13-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (#‘(𝐴(2 WSPathsNOn 𝐺)𝐵)) = 1)
 
Theoremfrgr2wwlkeqm 41496 If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. (Contributed by Alexander van der Vekens, 20-Feb-2018.) (Revised by AV, 13-May-2021.)
((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))
 
Theoremfrgrhash2wsp 41497 The number of simple paths of length 2 is n*(n-1) in a friendship graph with n vertices. This corresponds to the proof of claim 3 in [Huneke] p. 2: "... the paths of length two in G: by assumption there are ( n 2 ) such paths.". However, the order of vertices is not respected by Huneke, so he only counts half of the paths which are existing when respecting the order as it is the case for simple paths represented by words. (Contributed by Alexander van der Vekens, 6-Mar-2018.) (Revised by AV, 16-May-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · ((#‘𝑉) − 1)))
 
Theoremfusgr2wsp2nb 41498* The set of paths of length 2 with a given vertex in the middle for a finite simple graph is the union of all paths of length 2 from one neighbor to another neighbor of this vertex via this vertex. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})       ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑀𝑁) = 𝑥 ∈ (𝐺 NeighbVtx 𝑁) 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){⟨“𝑥𝑁𝑦”⟩})
 
Theoremfusgreghash2wspv 41499* According to statement 7 in [Huneke] p. 2: "For each vertex v, there are exactly ( k 2 ) paths with length two having v in the middle, ..." in a finite k-regular graph. For simple paths of length 2 represented by length 3 strings, we have again k*(k-1) such paths. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 17-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})       (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(𝑀𝑣)) = (𝐾 · (𝐾 − 1))))
 
Theoremfusgreg2wsp 41500* In a finite simple graph, the set of all paths of length 2 is the union of all the paths of length 2 over the vertices which are in the middle of such a path. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 18-May-2021.)
𝑉 = (Vtx‘𝐺)    &   𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})       (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑥𝑉 (𝑀𝑥))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >