Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frgrncvvdeqlemC Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlemC 41478
Description: Lemma C for frgrncvvdeq 41480. This corresponds to statement 3 in [Huneke] p. 1: "By symmetry the map is onto". (Contributed by Alexander van der Vekens, 24-Dec-2017.) (Revised by AV, 10-May-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlemC (𝜑𝐴:𝐷onto𝑁)
Distinct variable groups:   𝑦,𝐷   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝜑,𝑦,𝑥   𝑦,𝐸   𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlemC
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem5 41473 . 2 (𝜑𝐴:𝐷𝑁)
129adantr 480 . . . . . . 7 ((𝜑𝑛𝑁) → 𝐺 ∈ FriendGraph )
134eleq2i 2680 . . . . . . . . . 10 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑌))
14 frgrusgr 41432 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
151nbgrisvtx 40581 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → 𝑛𝑉)
1615ex 449 . . . . . . . . . . 11 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉))
179, 14, 163syl 18 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑉))
1813, 17syl5bi 231 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑉))
1918imp 444 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑉)
205adantr 480 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑋𝑉)
211, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem2 41470 . . . . . . . . . 10 (𝜑𝑋𝑁)
22 df-nel 2783 . . . . . . . . . . 11 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
23 nelelne 2880 . . . . . . . . . . 11 𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2422, 23sylbi 206 . . . . . . . . . 10 (𝑋𝑁 → (𝑛𝑁𝑛𝑋))
2521, 24syl 17 . . . . . . . . 9 (𝜑 → (𝑛𝑁𝑛𝑋))
2625imp 444 . . . . . . . 8 ((𝜑𝑛𝑁) → 𝑛𝑋)
2719, 20, 263jca 1235 . . . . . . 7 ((𝜑𝑛𝑁) → (𝑛𝑉𝑋𝑉𝑛𝑋))
2812, 27jca 553 . . . . . 6 ((𝜑𝑛𝑁) → (𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)))
291, 2frcond2 41439 . . . . . . 7 (𝐺 ∈ FriendGraph → ((𝑛𝑉𝑋𝑉𝑛𝑋) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3029imp 444 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (𝑛𝑉𝑋𝑉𝑛𝑋)) → ∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
31 reurex 3137 . . . . . . 7 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))
32 df-rex 2902 . . . . . . 7 (∃𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) ↔ ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3331, 32sylib 207 . . . . . 6 (∃!𝑚𝑉 ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
3428, 30, 333syl 18 . . . . 5 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)))
359, 14syl 17 . . . . . . . 8 (𝜑𝐺 ∈ USGraph )
36 simprrr 801 . . . . . . . . . . 11 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → {𝑚, 𝑋} ∈ 𝐸)
373eleq2i 2680 . . . . . . . . . . . 12 (𝑚𝐷𝑚 ∈ (𝐺 NeighbVtx 𝑋))
382nbusgreledg 40575 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → (𝑚 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑚, 𝑋} ∈ 𝐸))
3938ad2antlr 759 . . . . . . . . . . . . 13 (((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) → (𝑚 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑚, 𝑋} ∈ 𝐸))
4039adantr 480 . . . . . . . . . . . 12 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → (𝑚 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑚, 𝑋} ∈ 𝐸))
4137, 40syl5bb 271 . . . . . . . . . . 11 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → (𝑚𝐷 ↔ {𝑚, 𝑋} ∈ 𝐸))
4236, 41mpbird 246 . . . . . . . . . 10 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → 𝑚𝐷)
432nbusgreledg 40575 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ↔ {𝑛, 𝑚} ∈ 𝐸))
4443biimprcd 239 . . . . . . . . . . . . . . . 16 ({𝑛, 𝑚} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4544adantr 480 . . . . . . . . . . . . . . 15 (({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝐺 ∈ USGraph → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4645adantl 481 . . . . . . . . . . . . . 14 ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝐺 ∈ USGraph → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4746com12 32 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4847ad2antlr 759 . . . . . . . . . . . 12 (((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚)))
4948imp 444 . . . . . . . . . . 11 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → 𝑛 ∈ (𝐺 NeighbVtx 𝑚))
50 elin 3758 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ (𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁))
51 simpll 786 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐺 ∈ USGraph ) ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝜑)
5238bicomd 212 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 ∈ USGraph → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐺 ∈ USGraph ) → ({𝑚, 𝑋} ∈ 𝐸𝑚 ∈ (𝐺 NeighbVtx 𝑋)))
5453biimpa 500 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐺 ∈ USGraph ) ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚 ∈ (𝐺 NeighbVtx 𝑋))
5554, 37sylibr 223 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐺 ∈ USGraph ) ∧ {𝑚, 𝑋} ∈ 𝐸) → 𝑚𝐷)
5651, 55jca 553 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐺 ∈ USGraph ) ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝜑𝑚𝐷))
57 preq1 4212 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑚 → {𝑥, 𝑦} = {𝑚, 𝑦})
5857eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑚 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑚, 𝑦} ∈ 𝐸))
5958riotabidv 6513 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑚 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
6059cbvmptv 4678 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
6110, 60eqtri 2632 . . . . . . . . . . . . . . . . . . . 20 𝐴 = (𝑚𝐷 ↦ (𝑦𝑁 {𝑚, 𝑦} ∈ 𝐸))
621, 2, 3, 4, 5, 6, 7, 8, 9, 61frgrncvvdeqlem6 41474 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝐷) → {(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁))
63 eleq2 2677 . . . . . . . . . . . . . . . . . . . . 21 (((𝐺 NeighbVtx 𝑚) ∩ 𝑁) = {(𝐴𝑚)} → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
6463eqcoms 2618 . . . . . . . . . . . . . . . . . . . 20 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) ↔ 𝑛 ∈ {(𝐴𝑚)}))
65 elsni 4142 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ {(𝐴𝑚)} → 𝑛 = (𝐴𝑚))
6664, 65syl6bi 242 . . . . . . . . . . . . . . . . . . 19 ({(𝐴𝑚)} = ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6756, 62, 663syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐺 ∈ USGraph ) ∧ {𝑚, 𝑋} ∈ 𝐸) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚)))
6867expcom 450 . . . . . . . . . . . . . . . . 17 ({𝑚, 𝑋} ∈ 𝐸 → ((𝜑𝐺 ∈ USGraph ) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚))))
6968ad2antll 761 . . . . . . . . . . . . . . . 16 ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ((𝜑𝐺 ∈ USGraph ) → (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → 𝑛 = (𝐴𝑚))))
7069com3r 85 . . . . . . . . . . . . . . 15 (𝑛 ∈ ((𝐺 NeighbVtx 𝑚) ∩ 𝑁) → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ((𝜑𝐺 ∈ USGraph ) → 𝑛 = (𝐴𝑚))))
7150, 70sylbir 224 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝐺 NeighbVtx 𝑚) ∧ 𝑛𝑁) → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ((𝜑𝐺 ∈ USGraph ) → 𝑛 = (𝐴𝑚))))
7271ex 449 . . . . . . . . . . . . 13 (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → (𝑛𝑁 → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ((𝜑𝐺 ∈ USGraph ) → 𝑛 = (𝐴𝑚)))))
7372com14 94 . . . . . . . . . . . 12 ((𝜑𝐺 ∈ USGraph ) → (𝑛𝑁 → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))))
7473imp31 447 . . . . . . . . . . 11 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → (𝑛 ∈ (𝐺 NeighbVtx 𝑚) → 𝑛 = (𝐴𝑚)))
7549, 74mpd 15 . . . . . . . . . 10 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → 𝑛 = (𝐴𝑚))
7642, 75jca 553 . . . . . . . . 9 ((((𝜑𝐺 ∈ USGraph ) ∧ 𝑛𝑁) ∧ (𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸))) → (𝑚𝐷𝑛 = (𝐴𝑚)))
7776exp31 628 . . . . . . . 8 ((𝜑𝐺 ∈ USGraph ) → (𝑛𝑁 → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚)))))
7835, 77mpdan 699 . . . . . . 7 (𝜑 → (𝑛𝑁 → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚)))))
7978imp 444 . . . . . 6 ((𝜑𝑛𝑁) → ((𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → (𝑚𝐷𝑛 = (𝐴𝑚))))
8079eximdv 1833 . . . . 5 ((𝜑𝑛𝑁) → (∃𝑚(𝑚𝑉 ∧ ({𝑛, 𝑚} ∈ 𝐸 ∧ {𝑚, 𝑋} ∈ 𝐸)) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚))))
8134, 80mpd 15 . . . 4 ((𝜑𝑛𝑁) → ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
82 df-rex 2902 . . . 4 (∃𝑚𝐷 𝑛 = (𝐴𝑚) ↔ ∃𝑚(𝑚𝐷𝑛 = (𝐴𝑚)))
8381, 82sylibr 223 . . 3 ((𝜑𝑛𝑁) → ∃𝑚𝐷 𝑛 = (𝐴𝑚))
8483ralrimiva 2949 . 2 (𝜑 → ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚))
85 dffo3 6282 . 2 (𝐴:𝐷onto𝑁 ↔ (𝐴:𝐷𝑁 ∧ ∀𝑛𝑁𝑚𝐷 𝑛 = (𝐴𝑚)))
8611, 84, 85sylanbrc 695 1 (𝜑𝐴:𝐷onto𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wnel 2781  wral 2896  wrex 2897  ∃!wreu 2898  cin 3539  {csn 4125  {cpr 4127  cmpt 4643  wf 5800  ontowfo 5802  cfv 5804  crio 6510  (class class class)co 6549  Vtxcvtx 25673  Edgcedga 25792   USGraph cusgr 40379   NeighbVtx cnbgr 40550   FriendGraph cfrgr 41428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-upgr 25749  df-umgr 25750  df-edga 25793  df-usgr 40381  df-nbgr 40554  df-frgr 41429
This theorem is referenced by:  frgrncvvdeqlem8  41479
  Copyright terms: Public domain W3C validator