Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlsegvdeg Structured version   Visualization version   GIF version

Theorem trlsegvdeg 41395
Description: Formerly part of proof of eupath2lem3 26506: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the 1-walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the 1-walk except the last one, and a subgraph 𝑌 with the vertices 𝑉 of 𝐺 and one edges being the last edge of the 1-walk, then the vertex degree of any vertex 𝑈 of 𝐺 within 𝑍 is the sum of the vertex degree of 𝑈 within 𝑋 and the vertex degree of 𝑈 within 𝑌. Note that this theorem would not hold for arbitrary 1-walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(TrailS‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeg (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))

Proof of Theorem trlsegvdeg
StepHypRef Expression
1 eqid 2610 . 2 (iEdg‘𝑋) = (iEdg‘𝑋)
2 eqid 2610 . 2 (iEdg‘𝑌) = (iEdg‘𝑌)
3 eqid 2610 . 2 (Vtx‘𝑋) = (Vtx‘𝑋)
4 trlsegvdeg.vy . . 3 (𝜑 → (Vtx‘𝑌) = 𝑉)
5 trlsegvdeg.vx . . 3 (𝜑 → (Vtx‘𝑋) = 𝑉)
64, 5eqtr4d 2647 . 2 (𝜑 → (Vtx‘𝑌) = (Vtx‘𝑋))
7 trlsegvdeg.vz . . 3 (𝜑 → (Vtx‘𝑍) = 𝑉)
87, 5eqtr4d 2647 . 2 (𝜑 → (Vtx‘𝑍) = (Vtx‘𝑋))
9 trlsegvdeg.v . . . . 5 𝑉 = (Vtx‘𝐺)
10 trlsegvdeg.i . . . . 5 𝐼 = (iEdg‘𝐺)
11 trlsegvdeg.f . . . . 5 (𝜑 → Fun 𝐼)
12 trlsegvdeg.n . . . . 5 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
13 trlsegvdeg.u . . . . 5 (𝜑𝑈𝑉)
14 trlsegvdeg.w . . . . 5 (𝜑𝐹(TrailS‘𝐺)𝑃)
15 trlsegvdeg.ix . . . . 5 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
16 trlsegvdeg.iy . . . . 5 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
17 trlsegvdeg.iz . . . . 5 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
189, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem4 41391 . . . 4 (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
199, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem5 41392 . . . 4 (𝜑 → dom (iEdg‘𝑌) = {(𝐹𝑁)})
2018, 19ineq12d 3777 . . 3 (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹𝑁)}))
21 fzonel 12352 . . . . . . 7 ¬ 𝑁 ∈ (0..^𝑁)
2210trlf1 40906 . . . . . . . . 9 (𝐹(TrailS‘𝐺)𝑃𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)
2314, 22syl 17 . . . . . . . 8 (𝜑𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)
24 elfzouz2 12353 . . . . . . . . 9 (𝑁 ∈ (0..^(#‘𝐹)) → (#‘𝐹) ∈ (ℤ𝑁))
25 fzoss2 12365 . . . . . . . . 9 ((#‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
2612, 24, 253syl 18 . . . . . . . 8 (𝜑 → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
27 f1elima 6421 . . . . . . . 8 ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑁 ∈ (0..^(#‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(#‘𝐹))) → ((𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁)))
2823, 12, 26, 27syl3anc 1318 . . . . . . 7 (𝜑 → ((𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁)))
2921, 28mtbiri 316 . . . . . 6 (𝜑 → ¬ (𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)))
3029orcd 406 . . . . 5 (𝜑 → (¬ (𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹𝑁) ∈ dom 𝐼))
31 ianor 508 . . . . . 6 (¬ ((𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹𝑁) ∈ dom 𝐼) ↔ (¬ (𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹𝑁) ∈ dom 𝐼))
32 elin 3758 . . . . . 6 ((𝐹𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ ((𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹𝑁) ∈ dom 𝐼))
3331, 32xchnxbir 322 . . . . 5 (¬ (𝐹𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ (¬ (𝐹𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹𝑁) ∈ dom 𝐼))
3430, 33sylibr 223 . . . 4 (𝜑 → ¬ (𝐹𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
35 disjsn 4192 . . . 4 ((((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹𝑁)}) = ∅ ↔ ¬ (𝐹𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
3634, 35sylibr 223 . . 3 (𝜑 → (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹𝑁)}) = ∅)
3720, 36eqtrd 2644 . 2 (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = ∅)
389, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem2 41389 . 2 (𝜑 → Fun (iEdg‘𝑋))
399, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem3 41390 . 2 (𝜑 → Fun (iEdg‘𝑌))
4013, 5eleqtrrd 2691 . 2 (𝜑𝑈 ∈ (Vtx‘𝑋))
41 f1f 6014 . . . . 5 (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝐹:(0..^(#‘𝐹))⟶dom 𝐼)
4214, 22, 413syl 18 . . . 4 (𝜑𝐹:(0..^(#‘𝐹))⟶dom 𝐼)
4311, 42, 12resunimafz0 40368 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
4415, 16uneq12d 3730 . . 3 (𝜑 → ((iEdg‘𝑋) ∪ (iEdg‘𝑌)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
4543, 17, 443eqtr4d 2654 . 2 (𝜑 → (iEdg‘𝑍) = ((iEdg‘𝑋) ∪ (iEdg‘𝑌)))
469, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem6 41393 . 2 (𝜑 → dom (iEdg‘𝑋) ∈ Fin)
479, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem7 41394 . 2 (𝜑 → dom (iEdg‘𝑌) ∈ Fin)
481, 2, 3, 6, 8, 37, 38, 39, 40, 45, 46, 47vtxdfiun 40697 1 (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cop 4131   class class class wbr 4583  dom cdm 5038  cres 5040  cima 5041  Fun wfun 5798  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  0cc0 9815   + caddc 9818  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  VtxDegcvtxdg 40681  TrailSctrls 40899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-vtxdg 40682  df-1wlks 40800  df-trls 40901
This theorem is referenced by:  eupth2lem3lem7  41402
  Copyright terms: Public domain W3C validator