Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfrgr2v Structured version   Visualization version   GIF version

Theorem nfrgr2v 41442
 Description: Any graph with two (different) vertices is not a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Proof shortened by Alexander van der Vekens, 13-Sep-2018.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
nfrgr2v (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )

Proof of Theorem nfrgr2v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neirr 2791 . . . . . . . . . . . . . . . . . 18 ¬ 𝐴𝐴
2 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = (Edg‘𝐺)
32usgredgne 40433 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ (Edg‘𝐺)) → 𝐴𝐴)
43ex 449 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → ({𝐴, 𝐴} ∈ (Edg‘𝐺) → 𝐴𝐴))
51, 4mtoi 189 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺))
65adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺))
76intnanrd 954 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ ({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)))
8 prex 4836 . . . . . . . . . . . . . . . 16 {𝐴, 𝐴} ∈ V
9 prex 4836 . . . . . . . . . . . . . . . 16 {𝐴, 𝐵} ∈ V
108, 9prss 4291 . . . . . . . . . . . . . . 15 (({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))
117, 10sylnib 317 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))
12 neirr 2791 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵𝐵
132usgredgne 40433 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) → 𝐵𝐵)
1413ex 449 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → ({𝐵, 𝐵} ∈ (Edg‘𝐺) → 𝐵𝐵))
1512, 14mtoi 189 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺))
1615adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺))
1716intnand 953 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)))
18 prex 4836 . . . . . . . . . . . . . . . 16 {𝐵, 𝐴} ∈ V
19 prex 4836 . . . . . . . . . . . . . . . 16 {𝐵, 𝐵} ∈ V
2018, 19prss 4291 . . . . . . . . . . . . . . 15 (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))
2117, 20sylnib 317 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))
22 ioran 510 . . . . . . . . . . . . . 14 (¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) ↔ (¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∧ ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
2311, 21, 22sylanbrc 695 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
24 preq1 4212 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
25 preq1 4212 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
2624, 25preq12d 4220 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
2726sseq1d 3595 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺)))
28 preq1 4212 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
29 preq1 4212 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
3028, 29preq12d 4220 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3130sseq1d 3595 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
3227, 31rexprg 4182 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐵𝑌) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
33323adant3 1074 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
3433adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
3523, 34mtbird 314 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
36 reurex 3137 . . . . . . . . . . . 12 (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) → ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
3735, 36nsyl 134 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
3837orcd 406 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
39 rexnal 2978 . . . . . . . . . . . . . 14 (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
4039bicomi 213 . . . . . . . . . . . . 13 (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
4140a1i 11 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
42 difprsn1 4271 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
43423ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
4443adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
4544rexeqdv 3122 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
46 preq2 4213 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐵 → {𝑥, 𝑙} = {𝑥, 𝐵})
4746preq2d 4219 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝐵}})
4847sseq1d 3595 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
4948reubidv 3103 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5049notbid 307 . . . . . . . . . . . . . . 15 (𝑙 = 𝐵 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5150rexsng 4166 . . . . . . . . . . . . . 14 (𝐵𝑌 → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
52513ad2ant2 1076 . . . . . . . . . . . . 13 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5352adantr 480 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5441, 45, 533bitrd 293 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
55 rexnal 2978 . . . . . . . . . . . . . 14 (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
5655bicomi 213 . . . . . . . . . . . . 13 (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
5756a1i 11 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
58 difprsn2 4272 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
59583ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
6059adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
6160rexeqdv 3122 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
62 preq2 4213 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐴 → {𝑥, 𝑙} = {𝑥, 𝐴})
6362preq2d 4219 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐴 → {{𝑥, 𝐵}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝐴}})
6463sseq1d 3595 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝐴 → ({{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6564reubidv 3103 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6665notbid 307 . . . . . . . . . . . . . . 15 (𝑙 = 𝐴 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6766rexsng 4166 . . . . . . . . . . . . . 14 (𝐴𝑋 → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
68673ad2ant1 1075 . . . . . . . . . . . . 13 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6968adantr 480 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
7057, 61, 693bitrd 293 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
7154, 70orbi12d 742 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ((¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))))
7238, 71mpbird 246 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
73 sneq 4135 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → {𝑘} = {𝐴})
7473difeq2d 3690 . . . . . . . . . . . . . 14 (𝑘 = 𝐴 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐴}))
75 preq2 4213 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐴 → {𝑥, 𝑘} = {𝑥, 𝐴})
7675preq1d 4218 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝑙}})
7776sseq1d 3595 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
7877reubidv 3103 . . . . . . . . . . . . . 14 (𝑘 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
7974, 78raleqbidv 3129 . . . . . . . . . . . . 13 (𝑘 = 𝐴 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8079notbid 307 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
81 sneq 4135 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → {𝑘} = {𝐵})
8281difeq2d 3690 . . . . . . . . . . . . . 14 (𝑘 = 𝐵 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐵}))
83 preq2 4213 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → {𝑥, 𝑘} = {𝑥, 𝐵})
8483preq1d 4218 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝑙}})
8584sseq1d 3595 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8685reubidv 3103 . . . . . . . . . . . . . 14 (𝑘 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8782, 86raleqbidv 3129 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8887notbid 307 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8980, 88rexprg 4182 . . . . . . . . . . 11 ((𝐴𝑋𝐵𝑌) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
90893adant3 1074 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
9190adantr 480 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
9272, 91mpbird 246 . . . . . . . 8 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
93 rexnal 2978 . . . . . . . 8 (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
9492, 93sylib 207 . . . . . . 7 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
9594intnand 953 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph ) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
9695adantlr 747 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph ) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
97 id 22 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵})
98 difeq1 3683 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝐴, 𝐵} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝑘}))
99 reueq1 3117 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
10098, 99raleqbidv 3129 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
10197, 100raleqbidv 3129 . . . . . . . . 9 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
102101anbi2d 736 . . . . . . . 8 ((Vtx‘𝐺) = {𝐴, 𝐵} → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
103102notbid 307 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵} → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
104103adantl 481 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
105104adantr 480 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph ) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
10696, 105mpbird 246 . . . 4 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph ) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
107 df-nel 2783 . . . . 5 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
108 eqid 2610 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
109108, 2frgrusgrfrcond 41431 . . . . 5 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
110107, 109xchbinx 323 . . . 4 (𝐺 ∉ FriendGraph ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
111106, 110sylibr 223 . . 3 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∉ FriendGraph )
112111expcom 450 . 2 (𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ))
113 frgrusgr 41432 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
114113con3i 149 . . . 4 𝐺 ∈ USGraph → ¬ 𝐺 ∈ FriendGraph )
115114, 107sylibr 223 . . 3 𝐺 ∈ USGraph → 𝐺 ∉ FriendGraph )
116115a1d 25 . 2 𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ))
117112, 116pm2.61i 175 1 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∉ wnel 2781  ∀wral 2896  ∃wrex 2897  ∃!wreu 2898   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  {cpr 4127  ‘cfv 5804  Vtxcvtx 25673  Edgcedga 25792   USGraph cusgr 40379   FriendGraph cfrgr 41428 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-umgr 25750  df-edga 25793  df-usgr 40381  df-frgr 41429 This theorem is referenced by:  1to2vfriswmgr  41449  av-frgraregord013  41549
 Copyright terms: Public domain W3C validator