Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frgrusgrfrcond Structured version   Visualization version   GIF version

Theorem frgrusgrfrcond 41431
Description: A friendship graph is a simple graph which fulfils the friendship condition. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
isfrgr.v 𝑉 = (Vtx‘𝐺)
isfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrusgrfrcond (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Distinct variable groups:   𝑘,𝑙,𝑥,𝐺   𝑘,𝑉,𝑙,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑘,𝑙)

Proof of Theorem frgrusgrfrcond
StepHypRef Expression
1 isfrgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isfrgr.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2isfrgr 41430 . . . 4 (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
4 simpl 472 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸) → 𝐺 ∈ USGraph )
53, 4syl6bi 242 . . 3 (𝐺 ∈ FriendGraph → (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ))
65pm2.43i 50 . 2 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
71, 2isfrgr 41430 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸)))
86, 4, 7pm5.21nii 367 1 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘𝑉𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑥𝑉 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  cdif 3537  wss 3540  {csn 4125  {cpr 4127  cfv 5804  Vtxcvtx 25673  Edgcedga 25792   USGraph cusgr 40379   FriendGraph cfrgr 41428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-frgr 41429
This theorem is referenced by:  frgrusgr  41432  frgr0v  41433  frgr0  41436  frcond1  41438  frcond3  41440  frgr1v  41441  nfrgr2v  41442  frgr3v  41445  2pthfrgrrn  41452  n4cyclfrgr  41461
  Copyright terms: Public domain W3C validator