Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n4cyclfrgr Structured version   Visualization version   GIF version

Theorem n4cyclfrgr 41461
 Description: There is no 4-cycle in a friendship graph, see Proposition 1(a) of [MertziosUnger] p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Assertion
Ref Expression
n4cyclfrgr ((𝐺 ∈ FriendGraph ∧ 𝐹(CycleS‘𝐺)𝑃) → (#‘𝐹) ≠ 4)

Proof of Theorem n4cyclfrgr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 41432 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
2 usgrupgr 40412 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph )
31, 2syl 17 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ UPGraph )
4 eqid 2610 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2610 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
64, 5upgr4cycl4dv4e 41352 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹(CycleS‘𝐺)𝑃 ∧ (#‘𝐹) = 4) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))))
74, 5frgrusgrfrcond 41431 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8 simplrl 796 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ (Vtx‘𝐺))
9 necom 2835 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝑐𝑐𝑎)
109biimpi 205 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑐𝑐𝑎)
11103ad2ant2 1076 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑏𝑎𝑐𝑎𝑑) → 𝑐𝑎)
1211ad2antrl 760 . . . . . . . . . . . . . . . . . 18 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑐𝑎)
1312adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐𝑎)
14 eldifsn 4260 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) ↔ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑐𝑎))
158, 13, 14sylanbrc 695 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}))
16 sneq 4135 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → {𝑘} = {𝑎})
1716difeq2d 3690 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → ((Vtx‘𝐺) ∖ {𝑘}) = ((Vtx‘𝐺) ∖ {𝑎}))
18 preq2 4213 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑎 → {𝑥, 𝑘} = {𝑥, 𝑎})
1918preq1d 4218 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑎 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑙}})
2019sseq1d 3595 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2120reubidv 3103 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2217, 21raleqbidv 3129 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2322rspcv 3278 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2423ad3antrrr 762 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
25 preq2 4213 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑐 → {𝑥, 𝑙} = {𝑥, 𝑐})
2625preq2d 4219 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑐 → {{𝑥, 𝑎}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑐}})
2726sseq1d 3595 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑐 → ({{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2827reubidv 3103 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑐 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2928rspcv 3278 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
3015, 24, 29sylsyld 59 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
31 prcom 4211 . . . . . . . . . . . . . . . . . . 19 {𝑥, 𝑎} = {𝑎, 𝑥}
3231preq1i 4215 . . . . . . . . . . . . . . . . . 18 {{𝑥, 𝑎}, {𝑥, 𝑐}} = {{𝑎, 𝑥}, {𝑥, 𝑐}}
3332sseq1i 3592 . . . . . . . . . . . . . . . . 17 ({{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ {{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
3433reubii 3105 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
35 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
3635ad2antrl 760 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
37 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) → ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)))
3837ad2antrl 760 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)))
39 simpllr 795 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏 ∈ (Vtx‘𝐺))
40 simplrr 797 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑑 ∈ (Vtx‘𝐺))
41 simprr2 1103 . . . . . . . . . . . . . . . . . . . 20 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑏𝑑)
4241adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏𝑑)
43 4cycl2vnunb-av 41460 . . . . . . . . . . . . . . . . . . 19 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)) ∧ (𝑏 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺) ∧ 𝑏𝑑)) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4436, 38, 39, 40, 42, 43syl113anc 1330 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4544pm2.21d 117 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → (#‘𝐹) ≠ 4))
4645com12 32 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (#‘𝐹) ≠ 4))
4734, 46sylbi 206 . . . . . . . . . . . . . . 15 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (#‘𝐹) ≠ 4))
4830, 47syl6 34 . . . . . . . . . . . . . 14 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (#‘𝐹) ≠ 4)))
4948pm2.43b 53 . . . . . . . . . . . . 13 (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (#‘𝐹) ≠ 4))
5049adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (#‘𝐹) ≠ 4))
517, 50sylbi 206 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (#‘𝐹) ≠ 4))
5251expdcom 454 . . . . . . . . . 10 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) → (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4)))
5352rexlimdvva 3020 . . . . . . . . 9 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4)))
5453rexlimivv 3018 . . . . . . . 8 (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4))
556, 54syl 17 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐹(CycleS‘𝐺)𝑃 ∧ (#‘𝐹) = 4) → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4))
56553exp 1256 . . . . . 6 (𝐺 ∈ UPGraph → (𝐹(CycleS‘𝐺)𝑃 → ((#‘𝐹) = 4 → (𝐺 ∈ FriendGraph → (#‘𝐹) ≠ 4))))
5756com34 89 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(CycleS‘𝐺)𝑃 → (𝐺 ∈ FriendGraph → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4))))
5857com23 84 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ FriendGraph → (𝐹(CycleS‘𝐺)𝑃 → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4))))
593, 58mpcom 37 . . 3 (𝐺 ∈ FriendGraph → (𝐹(CycleS‘𝐺)𝑃 → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4)))
6059imp 444 . 2 ((𝐺 ∈ FriendGraph ∧ 𝐹(CycleS‘𝐺)𝑃) → ((#‘𝐹) = 4 → (#‘𝐹) ≠ 4))
61 neqne 2790 . 2 (¬ (#‘𝐹) = 4 → (#‘𝐹) ≠ 4)
6260, 61pm2.61d1 170 1 ((𝐺 ∈ FriendGraph ∧ 𝐹(CycleS‘𝐺)𝑃) → (#‘𝐹) ≠ 4)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ∃!wreu 2898   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  ‘cfv 5804  4c4 10949  #chash 12979  Vtxcvtx 25673   UPGraph cupgr 25747  Edgcedga 25792   USGraph cusgr 40379  CycleSccycls 40991   FriendGraph cfrgr 41428 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-uhgr 25724  df-upgr 25749  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-1wlks 40800  df-wlks 40801  df-trls 40901  df-pths 40923  df-cycls 40993  df-frgr 41429 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator