![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 14689) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 14637 defines the exponential function, which normally allows the exponent to be a complex number). Another example is that (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 26690). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5040 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3173 | . . . 4 class V | |
5 | 2, 4 | cxp 5036 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3539 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1475 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: reseq1 5311 reseq2 5312 nfres 5319 csbres 5320 res0 5321 opelres 5322 resres 5329 resundi 5330 resundir 5331 resindi 5332 resindir 5333 inres 5334 resdifcom 5335 resiun1 5336 resiun1OLD 5337 resiun2 5338 resss 5342 ssres 5344 ssres2 5345 relres 5346 xpssres 5354 resopab 5366 ssrnres 5491 imainrect 5494 xpima 5495 cnvcnv2 5506 resdmres 5543 ressnop0 6325 fndifnfp 6347 tpres 6371 marypha1lem 8222 gsum2d 18194 gsumxp 18198 pjdm 19870 hausdiag 21258 isngp2 22211 ovoliunlem1 23077 xpdisjres 28793 difres 28795 imadifxp 28796 mbfmcst 29648 0rrv 29840 dfres3 30902 elrn3 30906 dfon4 31170 restrreld 36978 csbresgOLD 38077 csbresgVD 38153 |
Copyright terms: Public domain | W3C validator |