Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundi Structured version   Visualization version   GIF version

Theorem resundi 5330
 Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 5095 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∪ (𝐶 × V))
21ineq2i 3773 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V)))
3 indi 3832 . . 3 (𝐴 ∩ ((𝐵 × V) ∪ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
42, 3eqtri 2632 . 2 (𝐴 ∩ ((𝐵𝐶) × V)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
5 df-res 5050 . 2 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
6 df-res 5050 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5050 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7uneq12i 3727 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∪ (𝐴 ∩ (𝐶 × V)))
94, 5, 83eqtr4i 2642 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  Vcvv 3173   ∪ cun 3538   ∩ cin 3539   × cxp 5036   ↾ cres 5040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547  df-opab 4644  df-xp 5044  df-res 5050 This theorem is referenced by:  imaundi  5464  relresfld  5579  resasplit  5987  fresaunres2  5989  residpr  6315  fnsnsplit  6355  tfrlem16  7376  mapunen  8014  fnfi  8123  fseq1p1m1  12283  gsum2dlem2  18193  dprd2da  18264  evlseu  19337  ptuncnv  21420  mbfres2  23218  eupath2lem3  26506  ffsrn  28892  resf1o  28893  cvmliftlem10  30530  poimirlem9  32588  eldioph4b  36393  pwssplit4  36677  undmrnresiss  36929  relexp0a  37027  rnresun  38357  resunimafz0  40368
 Copyright terms: Public domain W3C validator