MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resundir Structured version   Visualization version   GIF version

Theorem resundir 5331
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem resundir
StepHypRef Expression
1 indir 3834 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
2 df-res 5050 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5050 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5050 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4uneq12i 3727 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2642 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  Vcvv 3173  cun 3538  cin 3539   × cxp 5036  cres 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547  df-res 5050
This theorem is referenced by:  imaundir  5465  fresaunres2  5989  fvunsn  6350  fvsnun1  6353  fvsnun2  6354  fsnunfv  6358  fsnunres  6359  wfrlem14  7315  domss2  8004  axdc3lem4  9158  fseq1p1m1  12283  hashgval  12982  hashinf  12984  setsres  15729  setscom  15731  setsid  15742  pwssplit1  18880  constr3pthlem1  26183  ex-res  26690  padct  28885  eulerpartlemt  29760  poimirlem3  32582  mapfzcons1  36298  diophrw  36340  eldioph2lem1  36341  eldioph2lem2  36342  diophin  36354  pwssplit4  36677
  Copyright terms: Public domain W3C validator