Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padct Structured version   Visualization version   GIF version

Theorem padct 28885
Description: Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.)
Assertion
Ref Expression
padct ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝑉   𝑓,𝑍

Proof of Theorem padct
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdom2 7871 . 2 (𝐴 ≼ ω ↔ (𝐴 ≺ ω ∨ 𝐴 ≈ ω))
2 isfinite2 8103 . . . . . . . . . 10 (𝐴 ≺ ω → 𝐴 ∈ Fin)
3 isfinite4 13014 . . . . . . . . . 10 (𝐴 ∈ Fin ↔ (1...(#‘𝐴)) ≈ 𝐴)
42, 3sylib 207 . . . . . . . . 9 (𝐴 ≺ ω → (1...(#‘𝐴)) ≈ 𝐴)
54adantr 480 . . . . . . . 8 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (1...(#‘𝐴)) ≈ 𝐴)
6 bren 7850 . . . . . . . 8 ((1...(#‘𝐴)) ≈ 𝐴 ↔ ∃𝑔 𝑔:(1...(#‘𝐴))–1-1-onto𝐴)
75, 6sylib 207 . . . . . . 7 ((𝐴 ≺ ω ∧ 𝑍𝑉) → ∃𝑔 𝑔:(1...(#‘𝐴))–1-1-onto𝐴)
873adant3 1074 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑔 𝑔:(1...(#‘𝐴))–1-1-onto𝐴)
9 nfv 1830 . . . . . . 7 𝑔(𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴)
10 nfv 1830 . . . . . . 7 𝑔𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))
11 f1of 6050 . . . . . . . . . . . . 13 (𝑔:(1...(#‘𝐴))–1-1-onto𝐴𝑔:(1...(#‘𝐴))⟶𝐴)
1211adantl 481 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(#‘𝐴))⟶𝐴)
13 fconstmpt 5085 . . . . . . . . . . . . . 14 ((ℕ ∖ (1...(#‘𝐴))) × {𝑍}) = (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)
1413eqcomi 2619 . . . . . . . . . . . . 13 (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(#‘𝐴))) × {𝑍})
15 simplr 788 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → 𝑍𝑉)
16 fconst2g 6373 . . . . . . . . . . . . . 14 (𝑍𝑉 → ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(#‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(#‘𝐴))) × {𝑍})))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(#‘𝐴)))⟶{𝑍} ↔ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(#‘𝐴))) × {𝑍})))
1814, 17mpbiri 247 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(#‘𝐴)))⟶{𝑍})
19 disjdif 3992 . . . . . . . . . . . . 13 ((1...(#‘𝐴)) ∩ (ℕ ∖ (1...(#‘𝐴)))) = ∅
2019a1i 11 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ((1...(#‘𝐴)) ∩ (ℕ ∖ (1...(#‘𝐴)))) = ∅)
21 fun 5979 . . . . . . . . . . . 12 (((𝑔:(1...(#‘𝐴))⟶𝐴 ∧ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍):(ℕ ∖ (1...(#‘𝐴)))⟶{𝑍}) ∧ ((1...(#‘𝐴)) ∩ (ℕ ∖ (1...(#‘𝐴)))) = ∅) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):((1...(#‘𝐴)) ∪ (ℕ ∖ (1...(#‘𝐴))))⟶(𝐴 ∪ {𝑍}))
2212, 18, 20, 21syl21anc 1317 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):((1...(#‘𝐴)) ∪ (ℕ ∖ (1...(#‘𝐴))))⟶(𝐴 ∪ {𝑍}))
23 fz1ssnn 12243 . . . . . . . . . . . . 13 (1...(#‘𝐴)) ⊆ ℕ
24 undif 4001 . . . . . . . . . . . . 13 ((1...(#‘𝐴)) ⊆ ℕ ↔ ((1...(#‘𝐴)) ∪ (ℕ ∖ (1...(#‘𝐴)))) = ℕ)
2523, 24mpbi 219 . . . . . . . . . . . 12 ((1...(#‘𝐴)) ∪ (ℕ ∖ (1...(#‘𝐴)))) = ℕ
2625feq2i 5950 . . . . . . . . . . 11 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):((1...(#‘𝐴)) ∪ (ℕ ∖ (1...(#‘𝐴))))⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
2722, 26sylib 207 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
28273adantl3 1212 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}))
29 ssid 3587 . . . . . . . . . . . . . 14 𝐴𝐴
30 simpr 476 . . . . . . . . . . . . . . 15 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → 𝑔:(1...(#‘𝐴))–1-1-onto𝐴)
31 f1ofo 6057 . . . . . . . . . . . . . . 15 (𝑔:(1...(#‘𝐴))–1-1-onto𝐴𝑔:(1...(#‘𝐴))–onto𝐴)
32 forn 6031 . . . . . . . . . . . . . . 15 (𝑔:(1...(#‘𝐴))–onto𝐴 → ran 𝑔 = 𝐴)
3330, 31, 323syl 18 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ran 𝑔 = 𝐴)
3429, 33syl5sseqr 3617 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑔)
3534orcd 406 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → (𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)))
36 ssun 3754 . . . . . . . . . . . 12 ((𝐴 ⊆ ran 𝑔𝐴 ⊆ ran (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)))
3735, 36syl 17 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)))
38 rnun 5460 . . . . . . . . . . 11 ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) = (ran 𝑔 ∪ ran (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍))
3937, 38syl6sseqr 3615 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)))
40393adantl3 1212 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)))
41 dff1o3 6056 . . . . . . . . . . . 12 (𝑔:(1...(#‘𝐴))–1-1-onto𝐴 ↔ (𝑔:(1...(#‘𝐴))–onto𝐴 ∧ Fun 𝑔))
4241simprbi 479 . . . . . . . . . . 11 (𝑔:(1...(#‘𝐴))–1-1-onto𝐴 → Fun 𝑔)
4342adantl 481 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → Fun 𝑔)
44 cnvun 5457 . . . . . . . . . . . . . 14 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) = (𝑔(𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍))
4544reseq1i 5313 . . . . . . . . . . . . 13 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔(𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴)
46 resundir 5331 . . . . . . . . . . . . 13 ((𝑔(𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ↾ 𝐴))
4745, 46eqtri 2632 . . . . . . . . . . . 12 ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ↾ 𝐴))
48 dff1o4 6058 . . . . . . . . . . . . . . . . 17 (𝑔:(1...(#‘𝐴))–1-1-onto𝐴 ↔ (𝑔 Fn (1...(#‘𝐴)) ∧ 𝑔 Fn 𝐴))
4948simprbi 479 . . . . . . . . . . . . . . . 16 (𝑔:(1...(#‘𝐴))–1-1-onto𝐴𝑔 Fn 𝐴)
50 fnresdm 5914 . . . . . . . . . . . . . . . 16 (𝑔 Fn 𝐴 → (𝑔𝐴) = 𝑔)
5149, 50syl 17 . . . . . . . . . . . . . . 15 (𝑔:(1...(#‘𝐴))–1-1-onto𝐴 → (𝑔𝐴) = 𝑔)
5251adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → (𝑔𝐴) = 𝑔)
53 simpl3 1059 . . . . . . . . . . . . . . 15 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ¬ 𝑍𝐴)
5414cnveqi 5219 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) = ((ℕ ∖ (1...(#‘𝐴))) × {𝑍})
55 cnvxp 5470 . . . . . . . . . . . . . . . . . 18 ((ℕ ∖ (1...(#‘𝐴))) × {𝑍}) = ({𝑍} × (ℕ ∖ (1...(#‘𝐴))))
5654, 55eqtri 2632 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) = ({𝑍} × (ℕ ∖ (1...(#‘𝐴))))
5756reseq1i 5313 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ↾ 𝐴) = (({𝑍} × (ℕ ∖ (1...(#‘𝐴)))) ↾ 𝐴)
58 incom 3767 . . . . . . . . . . . . . . . . . 18 (𝐴 ∩ {𝑍}) = ({𝑍} ∩ 𝐴)
59 disjsn 4192 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
6059biimpri 217 . . . . . . . . . . . . . . . . . 18 𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
6158, 60syl5eqr 2658 . . . . . . . . . . . . . . . . 17 𝑍𝐴 → ({𝑍} ∩ 𝐴) = ∅)
62 xpdisjres 28793 . . . . . . . . . . . . . . . . 17 (({𝑍} ∩ 𝐴) = ∅ → (({𝑍} × (ℕ ∖ (1...(#‘𝐴)))) ↾ 𝐴) = ∅)
6361, 62syl 17 . . . . . . . . . . . . . . . 16 𝑍𝐴 → (({𝑍} × (ℕ ∖ (1...(#‘𝐴)))) ↾ 𝐴) = ∅)
6457, 63syl5eq 2656 . . . . . . . . . . . . . . 15 𝑍𝐴 → ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6553, 64syl 17 . . . . . . . . . . . . . 14 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ↾ 𝐴) = ∅)
6652, 65uneq12d 3730 . . . . . . . . . . . . 13 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = (𝑔 ∪ ∅))
67 un0 3919 . . . . . . . . . . . . 13 (𝑔 ∪ ∅) = 𝑔
6866, 67syl6eq 2660 . . . . . . . . . . . 12 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ((𝑔𝐴) ∪ ((𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ↾ 𝐴)) = 𝑔)
6947, 68syl5eq 2656 . . . . . . . . . . 11 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴) = 𝑔)
7069funeqd 5825 . . . . . . . . . 10 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → (Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴) ↔ Fun 𝑔))
7143, 70mpbird 246 . . . . . . . . 9 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
72 vex 3176 . . . . . . . . . . 11 𝑔 ∈ V
73 nnex 10903 . . . . . . . . . . . . 13 ℕ ∈ V
74 difexg 4735 . . . . . . . . . . . . 13 (ℕ ∈ V → (ℕ ∖ (1...(#‘𝐴))) ∈ V)
7573, 74ax-mp 5 . . . . . . . . . . . 12 (ℕ ∖ (1...(#‘𝐴))) ∈ V
7675mptex 6390 . . . . . . . . . . 11 (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍) ∈ V
7772, 76unex 6854 . . . . . . . . . 10 (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ∈ V
78 feq1 5939 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ↔ (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍})))
79 rneq 5272 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → ran 𝑓 = ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)))
8079sseq2d 3596 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → (𝐴 ⊆ ran 𝑓𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍))))
81 cnveq 5218 . . . . . . . . . . . . 13 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → 𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)))
82 eqidd 2611 . . . . . . . . . . . . 13 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → 𝐴 = 𝐴)
8381, 82reseq12d 5318 . . . . . . . . . . . 12 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → (𝑓𝐴) = ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴))
8483funeqd 5825 . . . . . . . . . . 11 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → (Fun (𝑓𝐴) ↔ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴)))
8578, 80, 843anbi123d 1391 . . . . . . . . . 10 (𝑓 = (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) → ((𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) ↔ ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴))))
8677, 85spcev 3273 . . . . . . . . 9 (((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)):ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran (𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ∧ Fun ((𝑔 ∪ (𝑥 ∈ (ℕ ∖ (1...(#‘𝐴))) ↦ 𝑍)) ↾ 𝐴)) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8728, 40, 71, 86syl3anc 1318 . . . . . . . 8 (((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) ∧ 𝑔:(1...(#‘𝐴))–1-1-onto𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8887ex 449 . . . . . . 7 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → (𝑔:(1...(#‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
899, 10, 88exlimd 2074 . . . . . 6 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → (∃𝑔 𝑔:(1...(#‘𝐴))–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
908, 89mpd 15 . . . . 5 ((𝐴 ≺ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
91903expia 1259 . . . 4 ((𝐴 ≺ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
92 nnenom 12641 . . . . . . . 8 ℕ ≈ ω
93 simpl 472 . . . . . . . . 9 ((𝐴 ≈ ω ∧ 𝑍𝑉) → 𝐴 ≈ ω)
9493ensymd 7893 . . . . . . . 8 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ω ≈ 𝐴)
95 entr 7894 . . . . . . . 8 ((ℕ ≈ ω ∧ ω ≈ 𝐴) → ℕ ≈ 𝐴)
9692, 94, 95sylancr 694 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ℕ ≈ 𝐴)
97 bren 7850 . . . . . . 7 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
9896, 97sylib 207 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
99 nfv 1830 . . . . . . 7 𝑓(𝐴 ≈ ω ∧ 𝑍𝑉)
100 simpr 476 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–1-1-onto𝐴)
101 f1of 6050 . . . . . . . . . 10 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
102 ssun1 3738 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 ∪ {𝑍})
103 fss 5969 . . . . . . . . . . 11 ((𝑓:ℕ⟶𝐴𝐴 ⊆ (𝐴 ∪ {𝑍})) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
104102, 103mpan2 703 . . . . . . . . . 10 (𝑓:ℕ⟶𝐴𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
105100, 101, 1043syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶(𝐴 ∪ {𝑍}))
106 f1ofo 6057 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
107 forn 6031 . . . . . . . . . . 11 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
108100, 106, 1073syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
10929, 108syl5sseqr 3617 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ⊆ ran 𝑓)
110 f1ocnv 6062 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto𝐴𝑓:𝐴1-1-onto→ℕ)
111 f1of1 6049 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto→ℕ → 𝑓:𝐴1-1→ℕ)
112100, 110, 1113syl 18 . . . . . . . . . 10 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:𝐴1-1→ℕ)
113 f1ores 6064 . . . . . . . . . . 11 ((𝑓:𝐴1-1→ℕ ∧ 𝐴𝐴) → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
11429, 113mpan2 703 . . . . . . . . . 10 (𝑓:𝐴1-1→ℕ → (𝑓𝐴):𝐴1-1-onto→(𝑓𝐴))
115 f1ofun 6052 . . . . . . . . . 10 ((𝑓𝐴):𝐴1-1-onto→(𝑓𝐴) → Fun (𝑓𝐴))
116112, 114, 1153syl 18 . . . . . . . . 9 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → Fun (𝑓𝐴))
117105, 109, 1163jca 1235 . . . . . . . 8 (((𝐴 ≈ ω ∧ 𝑍𝑉) ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
118117ex 449 . . . . . . 7 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (𝑓:ℕ–1-1-onto𝐴 → (𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
11999, 118eximd 2072 . . . . . 6 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
12098, 119mpd 15 . . . . 5 ((𝐴 ≈ ω ∧ 𝑍𝑉) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
121120a1d 25 . . . 4 ((𝐴 ≈ ω ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
12291, 121jaoian 820 . . 3 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉) → (¬ 𝑍𝐴 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))))
1231223impia 1253 . 2 (((𝐴 ≺ ω ∨ 𝐴 ≈ ω) ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
1241, 123syl3an1b 1354 1 ((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  ωcom 6957  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  1c1 9816  cn 10897  ...cfz 12197  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980
This theorem is referenced by:  carsggect  29707
  Copyright terms: Public domain W3C validator