![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version |
Description: Define proper subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 26677). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 3669). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3554). Other possible definitions are given by dfpss2 3654 and dfpss3 3655. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wpss 3541 | . 2 wff 𝐴 ⊊ 𝐵 |
4 | 1, 2 | wss 3540 | . . 3 wff 𝐴 ⊆ 𝐵 |
5 | 1, 2 | wne 2780 | . . 3 wff 𝐴 ≠ 𝐵 |
6 | 4, 5 | wa 383 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
7 | 3, 6 | wb 195 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 3654 psseq1 3656 psseq2 3657 pssss 3664 pssne 3665 nssinpss 3818 pssdif 3899 0pss 3965 difsnpss 4279 ordelpss 5668 fisseneq 8056 ominf 8057 f1finf1o 8072 fofinf1o 8126 inf3lem2 8409 inf3lem4 8411 infeq5 8417 fin23lem31 9048 isf32lem6 9063 ipolt 16982 lssnle 17910 pgpfaclem2 18304 lspsncv0 18967 islbs3 18976 lbsextlem4 18982 lidlnz 19049 filssufilg 21525 alexsubALTlem4 21664 ppiltx 24703 ex-pss 26677 ch0pss 27688 nepss 30854 dfon2 30941 relowlpssretop 32388 finxpreclem3 32406 fin2solem 32565 lshpnelb 33289 lshpcmp 33293 lsatssn0 33307 lcvbr3 33328 lsatcv0 33336 lsat0cv 33338 lcvexchlem1 33339 islshpcv 33358 lkrpssN 33468 lkreqN 33475 osumcllem11N 34270 pexmidlem8N 34281 dochsordN 35681 dochsat 35690 dochshpncl 35691 dochexmidlem8 35774 mapdsord 35962 trelpss 37680 isomenndlem 39420 lvecpsslmod 42090 |
Copyright terms: Public domain | W3C validator |