Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpss2 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
dfpss2 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3556 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | df-ne 2782 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | anbi2i 726 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
4 | 1, 3 | bitri 263 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∧ wa 383 = wceq 1475 ≠ wne 2780 ⊆ wss 3540 ⊊ wpss 3541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ne 2782 df-pss 3556 |
This theorem is referenced by: dfpss3 3655 sspss 3668 psstr 3673 npss 3679 ssnelpss 3680 pssv 3968 disj4 3977 f1imapss 6424 nnsdomo 8040 pssnn 8063 inf3lem6 8413 ssfin4 9015 fin23lem25 9029 fin23lem38 9054 isf32lem2 9059 pwfseqlem4 9363 genpcl 9709 prlem934 9734 ltaddpr 9735 isprm2lem 15232 chnlei 27728 cvbr2 28526 cvnbtwn2 28530 cvnbtwn3 28531 cvnbtwn4 28532 dfon2lem3 30934 dfon2lem5 30936 dfon2lem6 30937 dfon2lem7 30938 dfon2lem8 30939 dfon3 31169 lcvbr2 33327 lcvnbtwn2 33332 lcvnbtwn3 33333 |
Copyright terms: Public domain | W3C validator |