Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfpss3 | Structured version Visualization version GIF version |
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
dfpss3 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 3654 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | |
2 | eqss 3583 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | 2 | baib 942 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
4 | 3 | notbid 307 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵 ⊆ 𝐴)) |
5 | 4 | pm5.32i 667 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
6 | 1, 5 | bitri 263 | 1 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∧ wa 383 = wceq 1475 ⊆ wss 3540 ⊊ wpss 3541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-ne 2782 df-in 3547 df-ss 3554 df-pss 3556 |
This theorem is referenced by: pssirr 3669 pssn2lp 3670 ssnpss 3672 nsspssun 3819 npss0OLD 3967 pssdifcom1 4006 pssdifcom2 4007 php3 8031 fincssdom 9028 reclem2pr 9749 ressval3d 15764 islbs3 18976 chpsscon3 27746 chpssati 28606 fundmpss 30910 lpssat 33318 lssat 33321 dihglblem6 35647 pssnssi 38312 mbfpsssmf 39669 |
Copyright terms: Public domain | W3C validator |