MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpss3 Structured version   Visualization version   GIF version

Theorem dfpss3 3655
Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
dfpss3 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))

Proof of Theorem dfpss3
StepHypRef Expression
1 dfpss2 3654 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 eqss 3583 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
32baib 942 . . . 4 (𝐴𝐵 → (𝐴 = 𝐵𝐵𝐴))
43notbid 307 . . 3 (𝐴𝐵 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝐵𝐴))
54pm5.32i 667 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
61, 5bitri 263 1 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383   = wceq 1475  wss 3540  wpss 3541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-ne 2782  df-in 3547  df-ss 3554  df-pss 3556
This theorem is referenced by:  pssirr  3669  pssn2lp  3670  ssnpss  3672  nsspssun  3819  npss0OLD  3967  pssdifcom1  4006  pssdifcom2  4007  php3  8031  fincssdom  9028  reclem2pr  9749  ressval3d  15764  islbs3  18976  chpsscon3  27746  chpssati  28606  fundmpss  30910  lpssat  33318  lssat  33321  dihglblem6  35647  pssnssi  38312  mbfpsssmf  39669
  Copyright terms: Public domain W3C validator