Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr3 Structured version   Visualization version   GIF version

Theorem lcvbr3 33328
Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr3 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr3
StepHypRef Expression
1 lcvfbr.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvfbr.c . . 3 𝐶 = ( ⋖L𝑊)
3 lcvfbr.w . . 3 (𝜑𝑊𝑋)
4 lcvfbr.t . . 3 (𝜑𝑇𝑆)
5 lcvfbr.u . . 3 (𝜑𝑈𝑆)
61, 2, 3, 4, 5lcvbr 33326 . 2 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
7 iman 439 . . . . . 6 (((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
8 df-pss 3556 . . . . . . . . 9 (𝑇𝑠 ↔ (𝑇𝑠𝑇𝑠))
9 necom 2835 . . . . . . . . . 10 (𝑇𝑠𝑠𝑇)
109anbi2i 726 . . . . . . . . 9 ((𝑇𝑠𝑇𝑠) ↔ (𝑇𝑠𝑠𝑇))
118, 10bitri 263 . . . . . . . 8 (𝑇𝑠 ↔ (𝑇𝑠𝑠𝑇))
12 df-pss 3556 . . . . . . . 8 (𝑠𝑈 ↔ (𝑠𝑈𝑠𝑈))
1311, 12anbi12i 729 . . . . . . 7 ((𝑇𝑠𝑠𝑈) ↔ ((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)))
14 an4 861 . . . . . . . 8 (((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ (𝑠𝑇𝑠𝑈)))
15 neanior 2874 . . . . . . . . 9 ((𝑠𝑇𝑠𝑈) ↔ ¬ (𝑠 = 𝑇𝑠 = 𝑈))
1615anbi2i 726 . . . . . . . 8 (((𝑇𝑠𝑠𝑈) ∧ (𝑠𝑇𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
1714, 16bitri 263 . . . . . . 7 (((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
1813, 17bitri 263 . . . . . 6 ((𝑇𝑠𝑠𝑈) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
197, 18xchbinxr 324 . . . . 5 (((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ (𝑇𝑠𝑠𝑈))
2019ralbii 2963 . . . 4 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈))
21 ralnex 2975 . . . 4 (∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
2220, 21bitri 263 . . 3 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
2322anbi2i 726 . 2 ((𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈))) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
246, 23syl6bbr 277 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  wpss 3541   class class class wbr 4583  cfv 5804  LSubSpclss 18753  L clcv 33323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-lcv 33324
This theorem is referenced by:  lcvexchlem4  33342  lcvexchlem5  33343
  Copyright terms: Public domain W3C validator