Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnpss Structured version   Visualization version   GIF version

Theorem difsnpss 4279
 Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnpss (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)

Proof of Theorem difsnpss
StepHypRef Expression
1 notnotb 303 . 2 (𝐴𝐵 ↔ ¬ ¬ 𝐴𝐵)
2 difss 3699 . . . 4 (𝐵 ∖ {𝐴}) ⊆ 𝐵
32biantrur 526 . . 3 ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
4 difsnb 4278 . . . 4 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
54necon3bbii 2829 . . 3 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵)
6 df-pss 3556 . . 3 ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
73, 5, 63bitr4i 291 . 2 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
81, 7bitri 263 1 (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 195   ∧ wa 383   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ⊆ wss 3540   ⊊ wpss 3541  {csn 4125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-pss 3556  df-sn 4126 This theorem is referenced by:  marypha1lem  8222  infpss  8922  ominf4  9017  mrieqv2d  16122
 Copyright terms: Public domain W3C validator