Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version |
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | funeq 5823 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 Fun wfun 5798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-in 3547 df-ss 3554 df-br 4584 df-opab 4644 df-rel 5045 df-cnv 5046 df-co 5047 df-fun 5806 |
This theorem is referenced by: funopg 5836 funsng 5851 f1eq1 6009 fvn0ssdmfun 6258 funcnvuni 7012 fundmge2nop0 13129 funcnvs2 13508 funcnvs3 13509 funcnvs4 13510 shftfn 13661 isstruct2 15704 setsfun 15725 setsfun0 15726 strle1 15800 monfval 16215 ismon 16216 monpropd 16220 isepi 16223 isfth 16397 estrres 16602 lubfun 16803 glbfun 16816 acsficl2d 16999 frlmphl 19939 eengbas 25661 ebtwntg 25662 ecgrtg 25663 elntg 25664 istrl 26067 ispth 26098 isspth 26099 0spth 26101 1pthonlem1 26119 constr2spthlem1 26124 2pthlem1 26125 constr2pth 26131 constr3pthlem2 26184 ajfun 27100 fresf1o 28815 padct 28885 smatrcl 29190 esum2dlem 29481 omssubadd 29689 sitgf 29736 fperdvper 38808 ovnovollem1 39546 dfateq12d 39858 afvres 39901 f1ssf1 40328 uhgrspansubgrlem 40514 isTrl 40904 isPth 40929 issPth 40930 upgrwlkdvspth 40945 uhgr1wlkspthlem1 40959 uhgr1wlkspthlem2 40960 usgr2wlkspthlem1 40963 usgr2wlkspthlem2 40964 pthdlem1 40972 2spthd 41148 0spth-av 41294 3spthd 41343 trlsegvdeglem2 41389 trlsegvdeglem3 41390 fdivval 42131 |
Copyright terms: Public domain | W3C validator |