Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-om Structured version   Visualization version   GIF version

Definition df-om 6958
 Description: Define the class of natural numbers, which are all ordinal numbers that are less than every limit ordinal, i.e. all finite ordinals. Our definition is a variant of the Definition of N of [BellMachover] p. 471. See dfom2 6959 for an alternate definition. Later, when we assume the Axiom of Infinity, we show ω is a set in omex 8423, and ω can then be defined per dfom3 8427 (the smallest inductive set) and dfom4 8429. Note: the natural numbers ω are a subset of the ordinal numbers df-on 5644. They are completely different from the natural numbers ℕ (df-nn 10898) that are a subset of the complex numbers defined much later in our development, although the two sets have analogous properties and operations defined on them. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
df-om ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-om
StepHypRef Expression
1 com 6957 . 2 class ω
2 vy . . . . . . 7 setvar 𝑦
32cv 1474 . . . . . 6 class 𝑦
43wlim 5641 . . . . 5 wff Lim 𝑦
5 vx . . . . . 6 setvar 𝑥
65, 2wel 1978 . . . . 5 wff 𝑥𝑦
74, 6wi 4 . . . 4 wff (Lim 𝑦𝑥𝑦)
87, 2wal 1473 . . 3 wff 𝑦(Lim 𝑦𝑥𝑦)
9 con0 5640 . . 3 class On
108, 5, 9crab 2900 . 2 class {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
111, 10wceq 1475 1 wff ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
 Colors of variables: wff setvar class This definition is referenced by:  dfom2  6959  elom  6960
 Copyright terms: Public domain W3C validator