Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophin Structured version   Visualization version   GIF version

Theorem diophin 36354
Description: If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophin ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 36345 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 id 22 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3 zex 11263 . . . . . . 7 ℤ ∈ V
4 difexg 4735 . . . . . . 7 (ℤ ∈ V → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
53, 4mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V)
6 ominf 8057 . . . . . . 7 ¬ ω ∈ Fin
7 nn0z 11277 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 lzenom 36351 . . . . . . . 8 (𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
9 enfi 8061 . . . . . . . 8 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
107, 8, 93syl 18 . . . . . . 7 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ↔ ω ∈ Fin))
116, 10mtbiri 316 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin)
12 fz1eqin 36350 . . . . . . 7 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
13 inss1 3795 . . . . . . 7 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1)))
1412, 13syl6eqss 3618 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
15 eldioph2b 36344 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ V) ∧ (¬ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∈ Fin ∧ (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
162, 5, 11, 14, 15syl22anc 1319 . . . . 5 (𝑁 ∈ ℕ0 → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
17 nnex 10903 . . . . . . 7 ℕ ∈ V
1817a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → ℕ ∈ V)
19 1z 11284 . . . . . . 7 1 ∈ ℤ
20 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
2120uzinf 12626 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
2219, 21mp1i 13 . . . . . 6 (𝑁 ∈ ℕ0 → ¬ ℕ ∈ Fin)
23 elfznn 12241 . . . . . . . 8 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
2423ssriv 3572 . . . . . . 7 (1...𝑁) ⊆ ℕ
2524a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℕ)
26 eldioph2b 36344 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
272, 18, 22, 25, 26syl22anc 1319 . . . . 5 (𝑁 ∈ ℕ0 → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
2816, 27anbi12d 743 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)})))
29 reeanv 3086 . . . . 5 (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
30 inab 3854 . . . . . . . . 9 ({𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))}
31 reeanv 3086 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
32 simplrl 796 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))))
33 simplrr 797 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑒 ∈ (ℕ0𝑚 ℕ))
3412eqcomd 2616 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) = (1...𝑁))
3534reseq2d 5317 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3635ad3antrrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
3734reseq2d 5317 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
3837ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ (1...𝑁)))
39 simprrl 800 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑒 ↾ (1...𝑁)))
40 simprll 798 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = (𝑑 ↾ (1...𝑁)))
4138, 39, 403eqtr2d 2650 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑑 ↾ (1...𝑁)))
4236, 41eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
43 elmapresaun 36352 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → (𝑑𝑒) ∈ (ℕ0𝑚 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4432, 33, 42, 43syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0𝑚 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)))
4520uneq2i 3726 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1))
4619a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
47 nn0p1nn 11209 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
4847nnge1d 10940 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
49 lzunuz 36349 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 1 ≤ (𝑁 + 1)) → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
507, 46, 48, 49syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ (ℤ‘1)) = ℤ)
5145, 50syl5eq 2656 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ) = ℤ)
5251oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (ℕ0𝑚 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0𝑚 ℤ))
5352ad3antrrr 762 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (ℕ0𝑚 ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∪ ℕ)) = (ℕ0𝑚 ℤ))
5444, 53eleqtrd 2690 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑𝑒) ∈ (ℕ0𝑚 ℤ))
55 unidm 3718 . . . . . . . . . . . . . . . . . . 19 (𝑐𝑐) = 𝑐
5640, 39uneq12d 3730 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐𝑐) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
5755, 56syl5eqr 2658 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁))))
58 resundir 5331 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑒) ↾ (1...𝑁)) = ((𝑑 ↾ (1...𝑁)) ∪ (𝑒 ↾ (1...𝑁)))
5957, 58syl6eqr 2662 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → 𝑐 = ((𝑑𝑒) ↾ (1...𝑁)))
60 uncom 3719 . . . . . . . . . . . . . . . . . . . . 21 (𝑑𝑒) = (𝑒𝑑)
6160reseq1i 5313 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))
62 incom 3767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)
6362, 34syl5eq 2656 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (1...𝑁))
6463reseq2d 5317 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6564ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6663reseq2d 5317 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6766ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (1...𝑁)))
6867, 40, 393eqtr2d 2650 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑒 ↾ (1...𝑁)))
6965, 68eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
70 elmapresaunres2 36353 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 ∈ (ℕ0𝑚 ℕ) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑒 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑑 ↾ (ℕ ∩ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7133, 32, 69, 70syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑒𝑑) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7261, 71syl5eq 2656 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = 𝑑)
7372fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎𝑑))
74 simprlr 799 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎𝑑) = 0)
7573, 74eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
76 elmapresaunres2 36353 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ) ∧ (𝑑 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)) = (𝑒 ↾ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7732, 33, 42, 76syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ((𝑑𝑒) ↾ ℕ) = 𝑒)
7877fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = (𝑏𝑒))
79 simprrr 801 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏𝑒) = 0)
8078, 79eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)
8159, 75, 80jca32 556 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
82 reseq1 5311 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (1...𝑁)) = ((𝑑𝑒) ↾ (1...𝑁)))
8382eqeq2d 2620 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (𝑐 = (𝑓 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑑𝑒) ↾ (1...𝑁))))
84 reseq1 5311 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑑𝑒) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = ((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
8584fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
8685eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ↔ (𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
87 reseq1 5311 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑑𝑒) → (𝑓 ↾ ℕ) = ((𝑑𝑒) ↾ ℕ))
8887fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑑𝑒) → (𝑏‘(𝑓 ↾ ℕ)) = (𝑏‘((𝑑𝑒) ↾ ℕ)))
8988eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑑𝑒) → ((𝑏‘(𝑓 ↾ ℕ)) = 0 ↔ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))
9086, 89anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑑𝑒) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0)))
9183, 90anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑑𝑒) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))))
9291rspcev 3282 . . . . . . . . . . . . . . . 16 (((𝑑𝑒) ∈ (ℕ0𝑚 ℤ) ∧ (𝑐 = ((𝑑𝑒) ↾ (1...𝑁)) ∧ ((𝑎‘((𝑑𝑒) ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘((𝑑𝑒) ↾ ℕ)) = 0))) → ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9354, 81, 92syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) ∧ ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))) → ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
9493ex 449 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑒 ∈ (ℕ0𝑚 ℕ))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
9594rexlimdvva 3020 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) → ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
96 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → 𝑓 ∈ (ℕ0𝑚 ℤ))
97 difss 3699 . . . . . . . . . . . . . . . . . 18 (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ
98 elmapssres 7768 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (ℕ0𝑚 ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))))
9996, 97, 98sylancl 693 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))))
10099adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))))
101 nnssz 11274 . . . . . . . . . . . . . . . . . 18 ℕ ⊆ ℤ
102 elmapssres 7768 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (ℕ0𝑚 ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℕ0𝑚 ℕ))
10396, 101, 102sylancl 693 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑓 ↾ ℕ) ∈ (ℕ0𝑚 ℕ))
104103adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑓 ↾ ℕ) ∈ (ℕ0𝑚 ℕ))
105 simprl 790 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = (𝑓 ↾ (1...𝑁)))
10614ad3antrrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (1...𝑁) ⊆ (ℤ ∖ (ℤ‘(𝑁 + 1))))
107106resabs1d 5348 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
108105, 107eqtr4d 2647 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
109 simprrl 800 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)
110108, 109jca 553 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
111 resabs1 5347 . . . . . . . . . . . . . . . . . . 19 ((1...𝑁) ⊆ ℕ → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
11224, 111mp1i 13 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑓 ↾ ℕ) ↾ (1...𝑁)) = (𝑓 ↾ (1...𝑁)))
113105, 112eqtr4d 2647 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
114 simprrr 801 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → (𝑏‘(𝑓 ↾ ℕ)) = 0)
115110, 113, 114jca32 556 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
116 reseq1 5311 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑑 ↾ (1...𝑁)) = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)))
117116eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑐 = (𝑑 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁))))
118 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (𝑎𝑑) = (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
119118eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑎𝑑) = 0 ↔ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0))
120117, 119anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → ((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ↔ (𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0)))
121120anbi1d 737 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) → (((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
122 reseq1 5311 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = (𝑓 ↾ ℕ) → (𝑒 ↾ (1...𝑁)) = ((𝑓 ↾ ℕ) ↾ (1...𝑁)))
123122eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑓 ↾ ℕ) → (𝑐 = (𝑒 ↾ (1...𝑁)) ↔ 𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁))))
124 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = (𝑓 ↾ ℕ) → (𝑏𝑒) = (𝑏‘(𝑓 ↾ ℕ)))
125124eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑒 = (𝑓 ↾ ℕ) → ((𝑏𝑒) = 0 ↔ (𝑏‘(𝑓 ↾ ℕ)) = 0))
126123, 125anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑒 = (𝑓 ↾ ℕ) → ((𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0) ↔ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)))
127126anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑒 = (𝑓 ↾ ℕ) → (((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
128121, 127rspc2ev 3295 . . . . . . . . . . . . . . . 16 (((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ (𝑓 ↾ ℕ) ∈ (ℕ0𝑚 ℕ) ∧ ((𝑐 = ((𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ↾ (1...𝑁)) ∧ (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0) ∧ (𝑐 = ((𝑓 ↾ ℕ) ↾ (1...𝑁)) ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
129100, 104, 115, 128syl3anc 1318 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) ∧ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))) → ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)))
130129ex 449 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) → ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
131130rexlimdva 3013 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) → ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))))
13295, 131impbid 201 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0))))
133 simplrl 796 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
134 mzpf 36317 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) → 𝑎:(ℤ ↑𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → 𝑎:(ℤ ↑𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))⟶ℤ)
136 nn0ssz 11275 . . . . . . . . . . . . . . . . . . . . . 22 0 ⊆ ℤ
137 mapss 7786 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 ℤ) ⊆ (ℤ ↑𝑚 ℤ))
1383, 136, 137mp2an 704 . . . . . . . . . . . . . . . . . . . . 21 (ℕ0𝑚 ℤ) ⊆ (ℤ ↑𝑚 ℤ)
139138sseli 3564 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (ℕ0𝑚 ℤ) → 𝑓 ∈ (ℤ ↑𝑚 ℤ))
140 elmapssres 7768 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑𝑚 ℤ) ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))))
141139, 97, 140sylancl 693 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0𝑚 ℤ) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))))
142141adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) ∈ (ℤ ↑𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1)))))
143135, 142ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℤ)
144143zred 11358 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ)
145 simplrr 797 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → 𝑏 ∈ (mzPoly‘ℕ))
146 mzpf 36317 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (mzPoly‘ℕ) → 𝑏:(ℤ ↑𝑚 ℕ)⟶ℤ)
147145, 146syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → 𝑏:(ℤ ↑𝑚 ℕ)⟶ℤ)
148 elmapssres 7768 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ (ℤ ↑𝑚 ℤ) ∧ ℕ ⊆ ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑𝑚 ℕ))
149139, 101, 148sylancl 693 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (ℕ0𝑚 ℤ) → (𝑓 ↾ ℕ) ∈ (ℤ ↑𝑚 ℕ))
150149adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑓 ↾ ℕ) ∈ (ℤ ↑𝑚 ℕ))
151147, 150ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℤ)
152151zred 11358 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ)
153 sumsqeq0 12804 . . . . . . . . . . . . . . . 16 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) ∈ ℝ ∧ (𝑏‘(𝑓 ↾ ℕ)) ∈ ℝ) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
154144, 152, 153syl2anc 691 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
155139adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → 𝑓 ∈ (ℤ ↑𝑚 ℤ))
156 reseq1 5311 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))) = (𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))
157156fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = (𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))))
158157oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) = ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2))
159 reseq1 5311 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑓 → (𝑔 ↾ ℕ) = (𝑓 ↾ ℕ))
160159fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑏‘(𝑔 ↾ ℕ)) = (𝑏‘(𝑓 ↾ ℕ)))
161160oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → ((𝑏‘(𝑔 ↾ ℕ))↑2) = ((𝑏‘(𝑓 ↾ ℕ))↑2))
162158, 161oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
163 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) = (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))
164 ovex 6577 . . . . . . . . . . . . . . . . . 18 (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) ∈ V
165162, 163, 164fvmpt 6191 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (ℤ ↑𝑚 ℤ) → ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
166155, 165syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)))
167166eqeq1d 2612 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0 ↔ (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑓 ↾ ℕ))↑2)) = 0))
168154, 167bitr4d 270 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → (((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0) ↔ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0))
169168anbi2d 736 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) ∧ 𝑓 ∈ (ℕ0𝑚 ℤ)) → ((𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ (𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
170169rexbidva 3031 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑎‘(𝑓 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1))))) = 0 ∧ (𝑏‘(𝑓 ↾ ℕ)) = 0)) ↔ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
171132, 170bitrd 267 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ (𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
17231, 171syl5bbr 273 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)) ↔ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)))
173172abbidv 2728 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∧ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0))} = {𝑐 ∣ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
17430, 173syl5eq 2656 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) = {𝑐 ∣ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)})
175 simpl 472 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
176 fzssuz 12253 . . . . . . . . . . . 12 (1...𝑁) ⊆ (ℤ‘1)
177 uzssz 11583 . . . . . . . . . . . 12 (ℤ‘1) ⊆ ℤ
178176, 177sstri 3577 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
1793, 178pm3.2i 470 . . . . . . . . . 10 (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ)
180179a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ))
1813a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℤ ∈ V)
18297a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ)
183 simprl 790 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))))
184 mzpresrename 36331 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ (ℤ ∖ (ℤ‘(𝑁 + 1))) ⊆ ℤ ∧ 𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
185181, 182, 183, 184syl3anc 1318 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ))
186 2nn0 11186 . . . . . . . . . . 11 2 ∈ ℕ0
187 mzpexpmpt 36326 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
188185, 186, 187sylancl 693 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ))
189101a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ℕ ⊆ ℤ)
190 simprr 792 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → 𝑏 ∈ (mzPoly‘ℕ))
191 mzpresrename 36331 . . . . . . . . . . . 12 ((ℤ ∈ V ∧ ℕ ⊆ ℤ ∧ 𝑏 ∈ (mzPoly‘ℕ)) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
192181, 189, 190, 191syl3anc 1318 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ))
193 mzpexpmpt 36326 . . . . . . . . . . 11 (((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (𝑏‘(𝑔 ↾ ℕ))) ∈ (mzPoly‘ℤ) ∧ 2 ∈ ℕ0) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
194192, 186, 193sylancl 693 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ))
195 mzpaddmpt 36322 . . . . . . . . . 10 (((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ ((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2)) ∈ (mzPoly‘ℤ) ∧ (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ ((𝑏‘(𝑔 ↾ ℕ))↑2)) ∈ (mzPoly‘ℤ)) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
196188, 194, 195syl2anc 691 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ))
197 eldioph2 36343 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℤ ∈ V ∧ (1...𝑁) ⊆ ℤ) ∧ (𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2))) ∈ (mzPoly‘ℤ)) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
198175, 180, 196, 197syl3anc 1318 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → {𝑐 ∣ ∃𝑓 ∈ (ℕ0𝑚 ℤ)(𝑐 = (𝑓 ↾ (1...𝑁)) ∧ ((𝑔 ∈ (ℤ ↑𝑚 ℤ) ↦ (((𝑎‘(𝑔 ↾ (ℤ ∖ (ℤ‘(𝑁 + 1)))))↑2) + ((𝑏‘(𝑔 ↾ ℕ))↑2)))‘𝑓) = 0)} ∈ (Dioph‘𝑁))
199174, 198eqeltrd 2688 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ({𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁))
200 ineq12 3771 . . . . . . . 8 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) = ({𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}))
201200eleq1d 2672 . . . . . . 7 ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∩ {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) ∈ (Dioph‘𝑁)))
202199, 201syl5ibrcom 236 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1)))) ∧ 𝑏 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
203202rexlimdvva 3020 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))∃𝑏 ∈ (mzPoly‘ℕ)(𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
20429, 203syl5bir 232 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘(ℤ ∖ (ℤ‘(𝑁 + 1))))𝐴 = {𝑐 ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ (ℤ‘(𝑁 + 1))))(𝑐 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑏 ∈ (mzPoly‘ℕ)𝐵 = {𝑐 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑐 = (𝑒 ↾ (1...𝑁)) ∧ (𝑏𝑒) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
20528, 204sylbid 229 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
2061, 205syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
207206anabsi5 854 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  𝑚 cmap 7744  cen 7838  Fincfn 7841  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  mzPolycmzp 36303  Diophcdioph 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-exp 12723  df-hash 12980  df-mzpcl 36304  df-mzp 36305  df-dioph 36337
This theorem is referenced by:  anrabdioph  36362
  Copyright terms: Public domain W3C validator