Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mzp Structured version   Visualization version   GIF version

Definition df-mzp 36305
 Description: Polynomials over ℤ with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi-)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
df-mzp mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))

Detailed syntax breakdown of Definition df-mzp
StepHypRef Expression
1 cmzp 36303 . 2 class mzPoly
2 vv . . 3 setvar 𝑣
3 cvv 3173 . . 3 class V
42cv 1474 . . . . 5 class 𝑣
5 cmzpcl 36302 . . . . 5 class mzPolyCld
64, 5cfv 5804 . . . 4 class (mzPolyCld‘𝑣)
76cint 4410 . . 3 class (mzPolyCld‘𝑣)
82, 3, 7cmpt 4643 . 2 class (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
91, 8wceq 1475 1 wff mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
 Colors of variables: wff setvar class This definition is referenced by:  mzpval  36313  dmmzp  36314
 Copyright terms: Public domain W3C validator